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1 Abstract

Using a fibre-transmitted 1550nm laser, passed through a high NA aspheric lens, a nanoparticle of

silica was trapped in the focus of the laser field by optical forces. For this purpose an optical fibre

system was constructed, and different arrangements were tested. Experiments were conducted at

ambient pressure and in a high vacuum environment, at room temperature. The experiment gave

access to an interferometric signal, analysis of which produced characteristic power spectral den-

sities corresponding to those pressure regimes. Based on the information gained from observing

Rayleigh scattered light, a proof-of-principle experimental technique was developed in a simulation

to be used in trapping experiments, for transferring the particle between intensity maxima of a

standing wave. The technique relies on the application of the Unscented Kalman filter, used to

accurately infer the position and velocity of the particle in real-time during trapping. Through

inference, the scheme was used to successfully transfer the simulated particle in a desired direc-

tion with 62%-96% accuracy. Successful experimental implementation of the technique can aid

to suppress Radiation Pressure Shot Noise (RPSN) which is a fundamental limitation to achiev-

able sensitivity in levitated particle experiments. The flaws and potential improvements to the

technique were also discussed.
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2 Introduction

2.1 Motivation

After its experimental confirmation in 1901 [1], the question remained whether radiation pressure

can be utilised for practical applications. The original prediction by Maxwell indicated that the

optical forces generated by conventionally available sources would be small, therefore hard to mea-

sure in the background of thermal fluctuations, and essentially only effective on an astronomical

scale [1]. However, further theoretical developments [2] and technological advancements of the 20th

century allowed researchers to exploit these forces to gain a high degree of control over individual

dielectric particles and even atoms [3]. The development of lasers and high vacuum pumps enabled

access to greater intensities and reduced disturbances from the environment, crucial for precise

particle manipulation. This gave rise to the first series of practical applications in metrology,

sensing, study of light scattering and cloud physics processes [3, 4] and the laser cooling of atoms.

Cooling using radiation pressure was also investigated for objects on the micro-scale [5] along with

measurement of weak forces [6]. This spurred interest in using radiation pressure for precise mea-

surements, particularly detection of gravitational waves. Two decades later, Braginsky had also

established a fundamental limit on measurement of small forces, influencing the realisation of the

LIGO project [7]. After the first successful demonstration of optical feedback cooling for a macro-

scopic mirror [8], due to advancements in microfabrication kelvin and subkelvin temperatures were

reached [9](see figure 2.1), many deviating from the original microcantilever coupling design [10–12].

LETTERS

Sub-kelvin optical cooling of a micromechanical
resonator
Dustin Kleckner1 & Dirk Bouwmeester1

Micromechanical resonators, when cooled down to near their
ground state, can be used to explore quantum effects such as
superposition and entanglement at a macroscopic scale1–3. Prev-
iously, it has been proposed to use electronic feedback to cool a
high frequency (10 MHz) resonator to near its ground state4.
In other work, a low frequency resonator was cooled from room
temperature to 18 K by passive optical feedback5. Additionally,
active optical feedback of atomic force microscope cantilevers
has been used to modify their response characteristics6, and cool-
ing to approximately 2 K has been measured7. Here we dem-
onstrate active optical feedback cooling to 135 6 15 mK of a
micromechanical resonator integrated with a high-quality optical
resonator. Additionally, we show that the scheme should be appli-
cable at cryogenic base temperatures, allowing cooling to near the
ground state that is required for quantum experiments—near
100 nK for a kHz oscillator.

Using a laser tuned to the resonance fringe of a high finesse optical
cavity, it is possible to observe very small fluctuations in the length of
the cavity due to brownian motion of one or both of the end mirrors.
We have developed an optical cavity with one rigid large mirror,
6 mm in diameter and with a 25 mm radius of curvature, and one
tiny plane mirror, 30 mm in diameter, attached to a commercial
atomic force microscope cantilever of dimensions 450 3 50 3 2mm
with a fundamental resonance of 12.5 kHz (Fig. 1b). An optical fin-
esse of 2,100 and a mechanical quality factor of 137,000 have been
achieved with the system8. The motion of the tiny mirror/cantilever is
monitored by measuring the transmission of the cavity at a frequency
on the side of an optical resonance peak. To do this, we use about
1 mW from a 780 nm tunable diode laser which is locked to the
resonance fringe using the integrated signal from a photo-multiplier
tube which monitors the light transmitted through the cavity
(Fig. 1a). The time derivative of this signal is proportional to the
velocity of the cantilever tip and is used to modulate the amplitude
of a second, 980 nm, diode laser focused on the cantilever less than
100 mm away from the tiny mirror. The radiation pressure exerted by
this feedback laser counteracts the motion of the mirror and effec-
tively provides cooling of the fundamental mode.

The effective feedback gain can be varied over several orders of
magnitude by sending the feedback laser through a variable neutral
density filter. The average power in the feedback beam when it
reaches the cantilever is of the order of 1 mW at the highest gain
settings and proportionally lower otherwise. The mean modulation
depth of the feedback beam varies from nearly 100% to less than 5%
as gain is increased. The vibration spectrum of the cantilever as a
function of gain is shown in Fig. 2. The r.m.s. thermal amplitude of
the cantilever without feedback is 1.2 6 0.1 Å. From this value,
one can calculate that the spring constant of the cantilever is
0.15 6 0.01 N m21, in agreement with the manufacturer-specified

range, and the effective mass of the cantilever fundamental mode is
(2.4 6 0.2) 3 10211 kg.

To determine the effective gain of the feedback loop and the tem-
perature of the fundamental mode, we fit a lorentzian plus a constant
background to the vibration spectrum of the cantilever for each value
of feedback gain. The temperature is determined from the area under
the lorentzian without the background, while the gain is determined
by the width of the resonance. The linewidth provides a good mea-
sure of gain because it is directly determined by the damping rate
whereas the cantilever amplitude may be affected by other sources of
noise in the feedback loop. Cooling is observed over more than three
orders of magnitude. The lowest temperature we are able to measure
is 135 6 15 mK, or a cantilever r.m.s. amplitude of 0.023 6 0.002 Å,
with a gain (the ratio of feedback to mechanical damping) of
g 5 2,490 6 90 (Fig. 2b). The lowest trace in Fig. 2b, indicating an
even lower temperature, cannot be reliably fitted owing to the laser
noise floor. Since the optical finesse is not the current limiting factor,
we operate the opto-mechanical system at a finesse of only 200,
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Figure 1 | The experimental system. a, Diagram of the feedback
mechanism: a 780 nm observation laser (Obs.) is frequency locked to the
optical cavity (shown magnified at bottom) with an integrating circuit (via
the laser frequency modulation input, f. mod), using the signal from a
photomultiplier tube (PMT). This signal is also sent through a 1.25 kHz
bandpass filter at 12.5 kHz and a derivative circuit (d/dt) to provide an
intensity-modulating signal (I. mod.) for the 980 nm feedback laser (Fb.).
The feedback laser is attenuated with a variable neutral density (ND) filter to
adjust the gain of the feedback. The feedback force is exerted on the
cantilever via this laser’s radiation pressure. b, Scanning electron microscope
image of the tip of the cantilever with attached mirror.
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Figure 2.1: Cavity designed to cool a micromechanical resonator to subkelvin temperatures by optical feedback [9].

Scanning electron microscope image of the tip of the cantilever with a micromirror attached (adapted from [9]) is

shown on the right. Light transmitted through the cavity (light gray beam) allows to infer the velocity of the

cantilever. This information allows to modulate the optical feedback (dark gray beam), which is directed to exert

radiation pressure on the cantilever, thereby cooling the resonator.

Aside from its potential in sensing and metrology, cavity optomechanics is proposed to serve as a

platform to create quantum superpositions of macroscopic objects [13, 14] to explore the boundary
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between quantum and classical physics. One example application is probing fundamental prob-

lems such as the existence of exotic decoherence effects [14]. However, optomechanical systems

which are mechanically coupled permit heat leakage between components of that system. This

is not desired, since heat leakage is a thermal decoherence process which may swamp the un-

derlying dynamics, which are the primary focus of study in these systems. This clamping effect

can be avoided by making the area of contact as small as possible or by cryogenic cooling [7].

Levitated optomechanics offers a promising route for exploration of the dynamics of objects on

the mesoscopic scale, while eliminating the detrimental limitations to the achievable centre of

mass temperatures [15, 16]. A nanoparticle trapped in a laser beam is mechanically disconnected

from the environment such that the clamping effect is not present. The proposed scheme [17] was

realised [18], displayed nano-scale control over the position, and proven to be successful in cooling

down to the quantum mechanical ground state of a mechanical mode [19, 20] and force detection

with 10−21N sensitivity [21]. Elimination of clamping means that much greater Q-factors can be

reached without the need of cryogenic cooling. [15].

Left alone, the trapped particle will have nth ¼ kBT=ℏΩ0

thermal quanta, on average. However, by means of para-
metric feedback [11], we introduce a cold damping γfb,
which cools the particle to occupation numbers much lower
than nth. The feedback consists of a split detection scheme
in combination with a phase-locked loop for phase-
sensitive detection of the particle’s motion and feedback
control. As shown in Fig. 2, by means of feedback cooling
we are able to reach mean occupation numbers of
n ¼ 62.5� 5, which corresponds to a center-of-mass
temperature of Tcm ¼ ð450.5� 33.1Þ μK.
At very low pressures, Γth becomes negligibly small and,

in the absence of feedback cooling, the particle’s heating is
dominated by photon shot noise, i.e., the random momen-
tum kicks imparted by photon scattering. Photon recoils
imparted to the nanoparticle give rise to radiation pressure
backaction, that is, a disturbance of the particle’s motion.
The power spectral density (PSD) of the displacement
along the y direction is

SyyðΩÞ ¼ jχðΩÞj2SFyy; ð8Þ

where χðΩÞ ¼ ð1=mÞ=ðΩ2
0 − Ω2 − iγΩÞ is the susceptibil-

ity (transfer function) of the harmonic oscillator and SFyy is
the power spectral density of the force acting on the
nanoparticle. In the limit of a negligible contribution from
the residual gas, SFyy is dominated by photon shot noise, i.e.,
Ref. [26],

SFyy ¼
2

5

ℏω0

2πc2
Pscatt: ð9Þ

Here, ℏω0 is the photon energy and Pscatt is the scattered
power of the particle. The mean-square displacement is
calculated as

hy2i ¼
Z

∞

−∞
SyyðΩÞdΩ ¼ 1

5

ℏω0

mΩ2
0

Pscatt

mc2
1

γ
: ð10Þ

Assuming that the particle attains a thermal steady state, we
invoke the equipartition theorem ℏΩ0n∞ ¼ Kshy2i, with
trap stiffness Ks ¼ mΩ2

0. Inserting this expression into
Eq. (4), we finally find the recoil heating rate to be

Γrecoil ¼
1

5

Pscatt

mc2
ω0

Ω0

; ð11Þ

in agreement with atomic theory [21,33]. Note that similar
results are obtained for the displacements in the x and z
directions, but with different oscillation frequencies Ω0.
For the z direction the recoil formula turns out to be
identical to Eq. (11), whereas for the x direction (along the
polarization axis), it is only half as large.
Let us estimate the magnitude of Γrecoil. For a Gaussian

beam, the intensity at the laser focus is I0 ¼ P0k2NA2=2π,
where k ¼ ω0=c. The scattering cross section is derived
from the particle polarizability α as σscatt ¼ jαj2k4=6πε20,
where α ¼ 4πε0R3ðn2 − 1Þ=ðn2 þ 2Þ, n is the index of
refraction, and R the particle’s radius. The scattered power
is then calculated as Pscatt ¼ σscattI0. For the parameters used
in Figs. 2 and 3 we find Pscatt ¼ 3.53 μW. The specific mass
density of silica is ρSiO2 ¼ 2200 kg=m3 and the mass of
the particle turns out to be m ¼ 1.14 × 10−18 kg. Using
Ω0 ¼ 2π × 150 kHz, Eq. (11) predicts a reheating rate
of Γrecoil ¼ 13.0 kHz.
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FIG. 3. Steady state under feedback cooling. Mean occupation
number along the three principal axes (x, y, z) as a function of gas
pressure measured under constant feedback cooling for an
R ¼ 49.8 nm particle with focal power P0 ¼ 70 mW. The solid
curves are fitting functions of the form aþ bPgas.
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FIG. 2. Power spectral densities under feedback cooling. The
Lorentzian curves correspond to the motion of a particle with
radius R ¼ 49.8 nm along y for three different vacuum pressures:
6.6 × 10−4, 1.1 × 10−5, and 2 × 10−8 mbar. n indicates the mean
occupation number. The center-of-mass temperature of the
n ¼ 63 peak is Tcm ¼ 450 μK. Note that ~Syy is the single sided
PSD [31].
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Figure 2.2: First observation of RPSN in a levitated nanoparticle experiment, adapted from [22]. Steady-state

mean occupation number. vs. environment pressure. n∞ decreases with gas pressure until the effect saturates due

to RPSN.

Although not clamped, levitated nanoparticles are coupled to the molecules of gas in the envi-

ronment which supply random momentum kicks to the nanoparticle. This effect limits achievable

phonon occupation number (or temperature), but can be mitigated by evacuating the system.

Lowering the damping rate due to the finite pressure of the surrounding gas reveals another

limiting process in the system due to the trapping laser beam; the particle suffers from random
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momentum kicks provided by the Rayleigh scattered light, which is apparent at very low pressures

(see figure 2.2). Increasing number of incident photons N to decrease the position uncertainty of

a trapped object ∆x = 1/(2k
√
N) is counteracted by the disturbing effect of photon recoil heat-

ing. As a consequence, this radiation pressure shot noise (RPSN) is always present in levitated

optomechanical systems and at low pressures dominates as the main limiting factor to lowering

the phonon occupation number [22].

Lens

Hemispherical 
mirror

Heater 
plate

Trapped 
particle

Figure 2.3: Optical arrangement which could be used to suppress RPSN. A nanoparticle is trapped near a

maximum of intensity of a standing wave formed between a focusing lens and a reflective hemispherical mirror.

A heater plate placed behind the mirror could be used to uniformly heat the mirror and hence be a able to have

wavelength-scale control over its radius.

The objective of this Master’s project was a mixture of experimental, computational and the-

oretical work that will ultimately aid the realisation of a novel scheme of suppression of RPSN

from Rayleigh scattering. The scheme intends to utilise a hemispherical mirror to suppress the

disruptive Rayleigh scattered light at its geometric focus by destructive interference (see figure

2.3). If the optics are aligned for retro-reflection, the retro-reflected light arriving at the geo-

metric focus would interfere constructively or destructively, as proven to provide enhancement as

a classical interference effect [23]. In order to yield cancellation of scattered light, the mirror is

required to have a radius size close to an integer number of wavelengths. The heater plate can

be used to finely tune mirror radius to ensure destructive interference. In the tuning process,

it would be expected to see a periodic enhancement and suppression of Rayleigh scattered light

6
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FIG. 2. (Color online) Spontaneous decay rate as a function of the
spherical mirror numerical aperture for an atom at the mirror focus.
Top curve: The atom is at the antinode of the standing wave formed
by its retroreflected field. Bottom curve: The atom is at the node of
the standing wave. Large changes in the spontaneous emission rate
are already expected for moderate numerical apertures.

We can compute the modification of the decay rate as a
function of distance from the focus to estimate the sensitivity
to mirror, or lens, positioning. Figure 3 shows the dependence
of γ for an atom that is displaced away from the focus of a
hemispherical mirror and where the mirror is positioned such
that |φ�k(�r = �0)|2 = 0. The spontaneous emission rate is close
to zero within a volume λ3 around the focus and oscillates for
a few wavelengths until it reaches the free-space value. More
precise formulas must be used, however, when the atom is
far from the focus, as the approximation kR � l(l + 1) is no
longer valid for large distances from the focus [40].

The excited-state level shift will also be altered in the
same way because of a modified coupling to the retroreflected
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FIG. 3. (Color online) Spontaneous decay rate of an atom as it is
displaced from the focus, in the case of a full-hemispherical mirror.
Here the mirror is positioned such that a node of the standing wave
is at the focus. Trace (i) corresponds to a scenario where the atom
is displaced along the mirror axis. Trace (ii) is when the atom is
displaced perpendicular to the mirror axis.

modes. We find after contour integration that the excited-state
shift, normalized to the free-space decay rate, is

	e(�r) = 3

2

∑
b

|φb(�r)|2P

(
1

ωb − ω0

)

= 3

2

∫
2π

d ��
4π

(
1 −

∣∣∣∣ �d · ��
d

∣∣∣∣
2)

ρ sin[2(k0R + �k0 · �r)].

(60)

This gives an oscillatory level shift of amplitude ρ at the focus.
For a full half mirror, the level shift completely cancels for
mirror positions such that k0R = nπ , where the decay rate is
also zero. Its evolution with numerical aperture is similar to
the spontaneous emission rate change. Such large level shift
variations can yield a strong confining potential and would
be interesting to study experimentally with large-numerical
apertures, similarly to what is done in Ref. [48].

B. Virtual photon processes

The Lamb shift of the ground state can be computed in the
same way as the excited-state shift. In the simple case of a full
half mirror, and with the atom at the mirror focus, we get

	g(0) = γFS

k0

∫ mc/h̄

0
dk

k

k0 + k
sin2(kR). (61)

We can write this result as a sum of three terms that can be
easily integrated: the electron self-energy, the free-space Lamb
shift, and the Casimir-Polder shift. The electron self-energy is

	SE
g = γFS

K

2k0

[
1 + sin(2KR)

2KR

]
, (62)

where we write K = mc/h̄. This quantity is identified by
setting k0 to zero in Eq. (61) and in fact cancels with the shift
from the Â2 part of the Hamiltonian, as can be easily checked.
This procedure is known as mass renormalization [30]. The
free-space Lamb shift is

	FS
g = γFS ln

(
k0

K + k0

)
. (63)

The modified Lamb shift (or Casimir-Polder shift), the only
observable quantity, is

	CP
g = γFS

∫ 2k0R

2KR

dx

x
cos(x − 2k0R). (64)

The Casimir-Polder shift goes to zero for very large mirror-
atom distances (2k0R � 1) as expected and can be approxi-
mated by

	CP
g = γFS

(k0R)2
, (65)

closer to the mirror (but always at the focus). We note that
	CP

g drops more slowly with distance than in the plane mirror
case, where it decreases as γFS/(k0R)4 [27]. The difference
lies in the fact that there the mirror does not cancel as many
electromagnetic modes, which yields a faster decay of the QED
effects with distance.

As an example, using a decay rate of 15 MHz, a wavelength
of 493 nm (the S1/2 to P1/2 transition of 138Ba+), and a mirror
distance of 1 cm gives a Lamb shift of 100 Hz, which is

063812-8

Figure 2.4: A theoretical result adapted from [24] as a result of a QED calculation. The graph shows spontaneous

decay rate as a function of displacement of an atom from the centre of a hemispherical mirror in units of wavelength.

The two curves correspond to (i) displacement along the mirror axis and (ii) perpendicular to mirror axis.

constrained by a hemispherical mirror, [24] similarly to the theoretical result shown in figure (2.4).

As part of the project, an experiment was built which was used to trap and manipulate a nanopar-

ticle of fused silica in ultrahigh vacuum, gathering a phase sensitive interferometric signal used to

infer particle’s position. Throughout the run of the project, a range of focusing objectives and op-

tical arrangements were considered and tested, on both sides of the paraxial approximation regime.

Once optically aligned, the beam forms a standing wave between the focusing objective and the

hemispherical mirror. One of the problems which arise when considering RPSN suppression in

this scheme is that the nanoparticle may be trapped at a maximum too far from the geometric

focus for the Rayleigh scatter suppression to occur. Computationally, the idea of stimulating the

nanoparticle to hop between standing wave maxima in controlled fashion was explored by means

of a simulation. By manipulating the intensity amplitude of the laser beam, the particle can be

made to transfer ballistically by parametric excitation.
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3 Background

This section focuses on developing all the necessary theoretical tools that were used to obtain all

experimental and computational results. Starting with the Gaussian model of a laser beam and its

properties in section 3.1, the section briefly explains how trapping with optical forces is achieved

in 3.3, and the resulting particle dynamics in 3.4. The power spectral density is introduced in

section 3.5 as a tool of extracting useful information out of a time sequence. The section ends

with the theoretical background of the standard Kalman filter in 3.6 and motivation behind using

the Unscented Kalman filter in 3.7.

3.1 Gaussian Optics

The Gaussian beam is the lowest order mode solution to the wave equation when considered under

the paraxial approximation.1 It is a particularly useful description when considering output of

laser beams which, due to the spatial extent of lasers’ resonator cavities, usually output only the

lowest order mode.

Starting from the spatial part of the wave equation,

(∇2 + k2)Ẽ(~r) = 0, (3.1)

where Ẽ(~r) is the complex amplitude of the field distribution, ~r = (x, y, z) is some observation

point, and k is the wave number. Considering a beam propagating in the z direction with wave-

length λ with small variation in the transverse direction,2

Ẽ(~r) ≡ E0ũ(~r)e−ikz, (3.2)

where ũ(~r) is a scalar function that changes slowly in z. More rigorously, we require that ũ(~r)

1 Alternatively, the Gaussian beam can be obtained by considering the Huygens’ integral under the Fresnel ap-
proximation

2 this in part, is the paraxial approximation
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satisfies, ∣∣∣∣∂2ũ(~r)

∂z2

∣∣∣∣� ∣∣∣∣2k∂ũ(~r)

∂z

∣∣∣∣
∣∣∣∣∂2ũ(~r)

∂z2

∣∣∣∣� ∣∣∣∣∂2ũ(~r)

∂x2

∣∣∣∣
∣∣∣∣∂2ũ(~r)

∂z2

∣∣∣∣� ∣∣∣∣∂2ũ(~r)

∂y2

∣∣∣∣
(3.3)

Substituting into (3.1) gives,

∇2ũ(~r)− 2ik
∂ũ(~r)

∂z
= 0, (3.4)

and using (3.3) to drop the second derivative in z to get the paraxial Helmholtz equation,

(
∂2

∂x2
+

∂2

∂x2
− 2ik

∂

∂z

)
ũ(~r). (3.5)

Now considering an ansatz of the form, [25]

ũ(~r) = A(z)exp

[
−ik x

2 + y2

2q̃(z)

]
, (3.6)

where q̃(z) is complex function of z, and upon substitution into (3.5) yields the equation,

[(
k

2

)2(
dq̃(z)

dz
− 1

)
− 2ik

q̃

(
q̃

A(z)

dA(z)

dz
+ 1

)]
A(z) = 0. (3.7)

A non-trivial solution is found when,

dq̃

dz
= 1,

dA(z)

dz
=
A(z)

q̃(z)
,

(3.8)

solved by,

q̃(z) = q̃0 + z − z0,

A(z)

A0
=

q̃0

q̃(z)
.

(3.9)
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Conventionally, a choice is made for the parameters in (3.9),

A0 = i

q̃0 = zR =
nπω(z)2

λ

(3.10)

which conveniently redefine equation (3.6) in terms of quantities widely used to characterise Gaus-

sian beams. In equation (3.10), n is the index of refraction of the propagation medium and ω(z)2

will later be identified as the beam spot size. A0 was set equal to i as a global phase shift to the

solution, ensuring that the curvature of the wavefronts R = ∞ at the beam waist [26]. With this

choice made, the factor of 1/q̃(z) inside the exponential of equation (3.6) becomes,

1

q̃(z)
=

1

z + izR

=
z − izR
z2 + z2

R

=
1

R(z)
− i λ

nπω(z)2
.

(3.11)

The pre-factor of equation (3.6) can be equivalently expressed in terms of the amplitude and

phase, [25, 26]

iq̃0

q̃(z)
=

ω0

ω(z)
exp(iψ(z)) (3.12)

then substituting (3.11) and (3.12) into (3.6), it can be recovered to its more familiar form,

Ẽ(r, z) = E0ũ(r, z)eikz = E0
ω0

ω(z)
exp

(
− r2

ω(z)2

)
exp

(
−i
[
kz + k

r2

2R(z)
− ψ(z)

])
, (3.13)

for r2 = x2 + y2. This particular solution to the paraxial wave equation comes with three key

results which characterise the Gaussian beam,

ω(z) = ω0

√
1 +

(
z

zR

)2

Beam width

R(z) = z

√
1 +

(zR
z

)2

Radius of curvature

ψ(z) = arctan

(
z

zR

)
Gouy phase

(3.14)

From figure (3.1) it can be seen that for large focal length f (or equivalently large zR), the

following relationship can be established,

d

2f
≈
√

2w0

zR
=

√
2λ

πw0
, (3.15)

10



z

w(z)

√
2w0

zR

w0 θ

Figure 3.1: A plot of beam waist as a function of the coordinate along the cylindrical symmetry of the beam. For

z � zR the beam waist approaches the dotted lines.

where d is the lens diameter.

3.2 Matching the radius of curvature

Formation of a standing wave between the collimator and the hemispherical mirror is achieved

when the incident light is retro-reflected. The condition for retro-reflection is matching of the

wavefront and mirror curvatures. From equation (3.14) the radius of curvature of the beam is

given by,

R(z) = z

[
1 +

(zR
z

)2
]
. (3.16)

The radius of curvature of the mirror is a constant Rm. It then follows that the curvature of the

mirror and the beam match at,

zm =
1

2
Rm +

Rm
2

√
1− 4z2

R

Rm
, (3.17)

and for Rm � zR,

zm ≈ Rm −
z2
R

Rm
, (3.18)

which shows that for smaller zR the beam focus (at z = 0) is closer to the geometric focus of the

mirror.

3.3 Trapping a Particle Using Optical Forces

At the core of the optical trapping principle of the experiment lies the interplay of the scattering

force and the dipole force. These forces can be seen to arise in a simplistic approach modelling
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Figure 3.2: (Left) a particle trapped in a focused laser beam. The black line along the left vertical axis shows

the intensity profile. (Right) the enlargement of the trapped particle depicting passing rays. The particle has an

index of refraction that is greater than the surroundings. The thickness of the arrows indicates the intensity of the

passing ray. The corresponding forces arising as a consequence of the dipole force are also shown. Since ray A is

higher in intensity (due to the intensity gradient) it exerts a greater force on the particle. As a result, the particle

is pulled towards the focus of the laser beam.

the atom as a harmonic oscillator with a driving term3. Firstly, considering a point dipole in an

electric field. The electric field induces a dipole moment proportional to the electric field ε0χa ~E,

where ε0χa is the dipole polarisability. The associated interaction energy is given by,

U = −1

2
ε0χaE

2, (3.19)

and therefore a force,

~F = −∇U =
1

2
ε0χa∇(E2) = ε0χaE∇E. (3.20)

For a plane wave radiation linearly polarised in x direction and moving in z direction ~E =

E0 cos(ωt− kz)êx gives a z component of the force,

Fz = −ex
[
∂E0

∂z
cos(ωt− kz) + kE0 sin(ωt− kz)

]
. (3.21)

In a classical model of the atom, with the electron undergoing harmonic motion with a driving

term, the motion in x direction is described by,

ẍ+ βẋ+ ω0x =
F (t)

m
cos(ωt). (3.22)

The solution to (3.22) is given by,

x = u cos(ωt− kz)− v sin(ωt− kz) (3.23)

3 This model captures the main form of the force but doesn’t reproduce the correct scaling factors, such as intensity
saturation [26].
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where,

u =
ω − ω0

(ω − ω0)2 + (β2 )2
,

v =
−β/2

(ω − ω0)2 + (β2 )2
.

(3.24)

Substituting equation (3.24) into (3.21) with the driving force F = −eE0 and time averaging thus

yields,

〈Fz〉 = −e
[
u
∂E0

∂z
− kzE0

]
. (3.25)

Result in (3.25) can be generalised to [27],

〈~F 〉 =
e2

2ε0mc

[
− ω − ω0

(ω − ω0)2 + (β2 )2

∇I
ω

+
β/2

(ω − ω0)2 + (β2 )2

I

c
k̂

]
, (3.26)

for intensity of light I = 1
2ε0cE

2
0 . Two distinct terms arise in (3.26). Namely, the dipole (or

gradient) force proportional to ∇I and the scattering force proportional to I and pointing in

the direction of wave propagation k̂. The scattering force always acts in the direction of beam

propagation and arises as a consequence of momentum transfer to the particle. On the other

hand, the dipole force acts towards the gradient of higher intensity when the index of refraction of

the surrounding is lower than that of the trapped particle (See figure (3.2)). The particle can be

stably trapped if the beams is sufficiently tight or in other words, it has a steep enough gradient

to overcome the scattering force. The derivation shown does not capture all the detail and only

concerns a point-like dipole rather than bulk matter, but it demonstrates that the forces that are

usually presented as distinct, arise from the same phenomenon. A more rigorous treatment in the

regime of interest4 gives [28, 29],

~Fscatt =
Iσnm
c

k̂

~Fgrad =
2πα

cn2
m

∇I
(3.27)

where nm is the refractive index of the surrounding medium, σ is the cross section of the particle,

σ =
128π5a6

3λ4

[
m2 − 1

m2 + 2

]2

, (3.28)

a is the particle radius, and α is the particle’s polarisability,

α = n2
ma

3

[
m2 − 1

m2 + 2

]
. (3.29)

In equations (3.28) and (3.29), m is the ratio of refractive indices of the particle and the

surrounding medium np/nm. Figure (3.3) shows the component of the forces in the z direction

varied with axial distance z. The graph shows an important feature of an optical trap - in the

4 The Rayleigh regime, when the dipole approximation applies
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region around the beam focus the gradient of the force is linear and negative. Therefore, when

the particle is located close to the beam focus, it experiences a linear restoring force and behaves

harmonically. The gradient of the line which fits this regime is called the trap stiffness and classifies

how strongly bound the particle is to the trap [26].

100 75 50 25 0 25 50 75 100
Axial displacement (nm)

4

2

0

2

4

6

Fo
rc

e 
(n

N)

Gradient force, axial
Scattering force
Net force

Figure 3.3: Scattering force and gradient force plotted against distance from the focus along the beam axis

(x = y = 0) for a particle of silica (np = 1.44) with radius a = 90nm trapped in a Gaussian beam with waist

w0 = 0.1µm and maximum power of 1W.

3.4 Particle Dynamics

During trapping, the particle usually resides in the region of linear restoring force as showed in

figure (3.3), which gives rise to the harmonic motion. A particle moving through an environment

at finite pressure is subjected to a damping force, inversely proportional to the particle’s velocity.

When close to the focus of the laser beam, the particle is then described as a damped harmonic

oscillator with a driving term,

ẍ(t) + Γẋ(t) + Ω2
xx(t) =

F (t)

m
, (3.30)

and similarly for the other two directions. m is the particle mass and F (t) is a stochastic force

providing random kicks to the particle as a result of collisions with molecules in its environment.

The force has the characteristic properties associated with Brownian motion, [30]

〈F (t)〉 = 0,

〈F (t)F (t′)〉 = 2mΓkBTδ(t− t′).
(3.31)
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By definition, the random force acts as white noise on the oscillatory particle, as the spectral

distribution of F (t),5

SF (ω) = 〈|F (ω)|2〉 =

∫ ∞
−∞
〈F (t)F (t− τ)〉e−iωτdτ

= 2mΓkBT

∫ ∞
−∞

δ(τ)e−iωτdτ

= 2mΓkBT,

(3.32)

is constant, where in the first line of (3.32) the Weiner-Khinchin theorem is used. Samples of

white noise at different times are uncorrelated. The root-mean-square acceleration provided by

the random force is the given by,

aRMS =

√
〈|F (ω)|2〉

m2
=

√
2ΓkBT

m
, (3.33)

which was used when simulating particle dynamics as the spread of the Weiner process in the

Euler-Mayurama method (see Appendix section 8.1).

3.5 Power Spectral Density

Power spectral density, usually abbreviated PSD, is a useful tool in extracting information from

a time sequence as it allows to see the power content6 in any frequency interval. It is a different

way of expressing the same information about the time sequence but usually is more accessible.

PSD of the particle’s position allows to deduce many useful quantities - trap frequency, damping

rate, average square position, center of mass temperature to name a few [15]. It is defined as,

Sxx(ω) = |x̂(ω)|2, (3.34)

where x̂(ω) is the Fourier transform of x(t),

x̂(w) =

∫ ∞
−∞

e−iωtx(t)dt. (3.35)

To find Sxx, a Fourier transform is applied to equation (3.30) to obtain,

(−ω2 − iω + Ω2
x)x(ω) =

F (ω)

m
, (3.36)

5 Weiner-Khinchin theorem relates the autocorrelation of a random stationary process (〈F (t)〉 = q where q is
constant in time) to the corresponding power spectrum.

6 The term ‘power’ or ‘energy’ in this context represents a general notion of power or energy to express the idea
of which parts of the signal contribute most to its variation
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Figure 3.4: Power spectral density of the position x for different values of the damping rate Γ for a particle of

mass m = 10−18kg, temperature T = 300K, and trap frequency in x Ωx = 2π× 790kHz. Here the units of Sxx are

arbitrary, but usually the PSD is expressed in units of W/Hz

then averaging and rearranging,

Sxx(ω) = 〈|x(w)|2〉 =
〈|F (ω)|2〉

m2 [(Ω2
x − ω2)2 + Γ2ω2]

. (3.37)

Quantity 〈|F (ω)|2〉 = SF (ω) which was calculated in the previous section. Finally,

Sxx(ω) =
2kBTΓ

m [(Ω2
x − ω2)2 + Γ2ω2]

. (3.38)

Figure (3.4) shows Sxx graphically for different values of the damping rate Γ. It shows that the

smaller the value of Γ, the more defined features of the PSD. The resonant spike is centred on

the trap frequency Ωx with the width defined by Γ. Therefore, the width of Sxx is indicative

of the local pressure in the vicinity of the particle. To demonstrate its usage further, one useful

examples is using the PSD to obtain the average square position. 〈x2〉 can be found by summing

over positive frequency contributions and averaging, and therefore,

〈x2〉 =

∫ ∞
0

Sxx(ω)dω. (3.39)

Many other quantities can be obtained such as the centre of mass temperature through consid-

erations of equipartition theorem. However, Sxx was not directly observed in the experiment of

this project. Instead the PSD corresponding to the interferometric signal was observed. The

signal’s spectral density has a much more complicated structure [31] but encompasses the same

information.
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3.6 Kalman Filter

The experiment does not provide a direct readout of particle position within the trap. Rather, the

information about particle position is hidden within a noisy interferometric signal. In a situation

where the desired information about a state of a system is not directly accessible and instead only

an indirect measurement infested by noise is available, the Kalman filter is a powerful tool to make

an optimal estimate of the state. The state of the system can be any set of desired properties

of the observed system in question, given that two conditions are met. Namely, that is we have

some model which allows us to estimate how the system will evolve in time. In the particular case

studied in this project, the state of interest is the position and the velocity of the particle. We

also require to have means to take measurements which provide information about the quantity of

interest, whether directly or indirectly7. In the standard Kalman filter the relationship between

the true value of the state8 x and the measured quantity is required to be linear,

zk = Hxk + vk, (3.40)

where H is the matrix which maps the true state vector of the system xk at time k to the

corresponding measurement zk, and vk is Gaussian distributed white noise. Similarly for the

system dynamics, the prediction of the future state is required to be linear, encompassed by the

state extrapolation equation,

xk+1 = Fx̂k + Guk + wk. (3.41)

The hat above the state vector indicates that it is a so-called a posteriori state; The state corrected

by accounting of the most recent observations of the system. On the other hand, the state without

the hat indicates that it is an a priori state; a predicted state using only the knowledge of system

dynamics. Matrices F and G are the transition matrix and the control matrix respectively. They

map the a posteriori state from time step k to a priori state of time step k+1. The only difference

between F and G is that the transition matrix encompasses the dynamics which depend on the

previous state of the system, whilst the control matrix encompasses the dynamics independent

of the state. Vector wk is called the process noise. It encompasses the dynamics that affect the

evolution of the state, but cannot be accounted due to their random nature. Similarly to the

measurement noise vk, the process noise is assumed to be Gaussian distributed white noise.

Figure 3.5 shows diagrammatically each step of the Kalman filter’s operation. The process is

7 In cases when the state components are related by system dynamics, a measurement of only one of them is
sufficient to accurately estimate the both. This is the case for the position and velocity.

8 Notation: the true value of the state is denoted by italicised ‘x’ whilst estimates are denoted by ‘x’
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Figure 3.5: A diagram showing the operation of the Kalman filter. Arrow labels indicate the evolution of the

state at different steps in the algorithm.

as follows:

1. Set initial values. To begin using the Kalman filter an initial guess of the state com-

ponents and the associated covariance matrix are needed for the first iteration. The state

is a vector and the covariance matrix contains the variances associated to the state and the

cross correlations. For example in 2 dimensions the state vector and the covariance matrix

are of the form,

x̂0 =

 a

b

 and P̂0 =

 σ2
aa σ2

ab

σ2
ba σ2

bb

 . (3.42)

where a and b are quantities of interest such as the position and velocity. The initial states are

denoted with hats, indicating that they are a posteriori states. This is because at this point

in the algorithm, the initial state and the covariance matrix are estimates which represent

our best knowledge of the state.

2. Predict state and error covariance. As explained above, equation (3.41) is used to

extrapolate the a posteriori state estimate x̂0 to an a priori state estimate x1 for the next

time step. How system dynamics can be translated to those of the form given in equation

(3.41) is demonstrated in section 6.2. Similarly to the state vector, the covariance matrix

also has to be progressed in time to accurately describe the updated state vector x1. It can

be derived [32] from the state update equation that the evolution of the covariance matrix in

time is described by,

Pk+1 = FP̂kF
T + Q, (3.43)

where Q = E[wT
k wk] is the covariance matrix associated to the process noise. Addition of
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Q to the future a priori state Pk+1 expresses the fact that every time step adds uncertainty

to the knowledge of the state due to unaccountable random dynamics in the form of process

noise. Therefore, at this step of the Kalman filter, the state estimate and the covariance

matrix are transformed such that (x̂0, P̂0) 7→ (x1,P1).

3. (A) Compute Kalman gain. The Kalman gain is a quantity which arises when we seek

minimisation of the covariance matrix,

Kk = PkH
T( HPkH

T︸ ︷︷ ︸
covariance of
the expected
measurement

+ R︸︷︷︸
covariance of
the observed
measurement

)−1, (3.44)

where R = E[vT
k vk] is the measurement covariance. Akin to the process noise in equation

(3.43), it adds uncertainty at every update of the Kalman gain to account for inevitable mea-

surement noise, always present when a measurement is taken. The Kalman gain quantifies

how much we trust the measurement zk relative to the predicted estimate of the measurement

Hxk. As in equation (3.40), H encodes the measurement model and tells us the expected

outcome of the measurement. (B) Perform a measurement zk ready for the final step

of the Kalman filter.

4. Compute state estimate and error estimate. The purpose of this step is to update

the state estimate with the available information - the observation zk with the associated

Kalman gain Kk. An update to the a priori state estimate xk is computed using, [32]

x̂k = xk + Kk(zk −Hxk), (3.45)

and,

P̂k = (I−KkH)Pk, (3.46)

where I is the identity matrix. The state update equation is found by finding the Gaus-

sian distribution which gives probability of the expected measurement given the observed

measurement. More specifically, having access to the prior probability distribution for the ex-

pected measurement P [Hxk] the aim is to find the posterior probability distribution P [xk|zk]

which accounts for the knowledge of the observation made of xk. Using Bayes’ theorem,

P [Hxk|zk] =
P [zk|Hxk]P [Hxk]

P [zk]
(3.47)

where we can ignore P [zk] and normalise the posterior distribution later. As mentioned

above, we have access to the prior probability distribution modelled by a Gaussian distri-

bution P [Hxk] = N [Hxk,HPkH
T]9. Similarly, P [zk|xk] is obtained from the measurement

9 Notation: N [·] denotes the normal distribution
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model, in equation (3.40). In the Kalman filter, it is assumed that the state is Gaus-

sian distributed and the linearity of the measurement model preserves the Gaussian nature.

Therefore, P [zk|Hxk] = N [zk,R]. A product of two Gaussian PDFs is also Gaussian. The

resulting Gaussian posterior has mean and covariance given by, [32]

Hx̂k = Hxk + HPkH
T(HPkH

T + R)−1(zk −Hxk)

HP̂kH
T = HPkH

T −HPkH
T(HPkH

T + R)−1HPkH
T

(3.48)

which reduce to equations (3.45) and (3.46) upon cancellation of redundant H and HT

matrices. In equation (3.45) the Kalman gain is acts as a weight for the measurement

residual yk = zk −Hxk. The update state and can be intuitively thought of as a measure of

trust in the measurement. The updated state represents the best state of knowledge for the

state estimate for this time step. The a posteriori estimate is then used for the extrapolation

to the next time step, and the algorithm repeats recursively from step (2).

This completes the description of the linear Kalman filter. The algorithm acts as an optimal

estimator for systems which can be described by linear system dynamics and measurement. Al-

though system dynamics of the particle in the trap are linear, the relationship of the position to

the measured quantity is not. A modified version of the Kalman filter is needed to address the

nonlinearities, which is the subject of the next section.

3.7 Unscented Kalman Filter

While it is fair to assume that the components of the state are Gaussian distributed, nonlinear

relationships of the state to the dynamics or the measurement, lead to a vastly different probability

density function. This is demonstrated in figure (3.6). The interferometric signal measured during

trapping has the form,

V = V0 sin(κz(t) + θ(t)) (3.49)

where V0, κ, φ are the signal amplitude, rate of change of phase with position and a slowly drifting

random phase respectively. This form of measurement is highly nonlinear. The standard Kalman

filter described in the previous section heavily relies on the state estimate distribution retaining

its Gaussian form at every step of the algorithm, hence it is not applicable in this case.

There are many modifications of the Kalman filter designed to expand onto nonlinear problems.

One of the early and successful modifications is the extended Kalman filter. It does not modify

the algorithm itself but rather the problem in question; the system dynamics and measurement

are linearlised through a clever change of variables, such that the Kalman filter is applicable.

This method relies on the Taylor approximation and is therefore only capable of capturing the
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f(x)=sin(x)

Figure 3.6: The orange histogram shows a sample of 500000 normally distributed points x. The purple histogram

shows the distribution of the same sample when the nonlinear function f(x) = sin(x) is applied to each point. Both

histograms are area normalised.

first order accuracy [33]. When applied to highly nonlinear systems, the filter has a tendency to

diverge [32]. It also requires the calculation of derivatives at every time step which can be compu-

tationally expensive.

Another alternative is the Monte Carlo Kalman filter10. This is a highly preferable alternative,

as the this filter is not constrained to weak nonlinearities. This is because it relies on reconstruct-

ing the probability density function distorted by nonlinearities through sampling. At each time

step, the filter generates a large number of points selected at random and passes them through

the nonlinear function. This process allows to build up the distorted distribution, as it was done

in figure (3.6). From the output, the mean and variance can then be calculated to approximate

a Gaussian then use the Kalman filter as usual. This approach is highly effective, being able to

resolve even highly nonlinear functions given that enough points are sampled. However, the large

number of randomly selected points, called sigma points, give rise to the largest disadvantage for

the particular case of considered in this project. As the final goal of developing the protocol of

site hopping is to be able to perform this signal analysis in real-time during trapping, the filter

needs to operate extremely quickly. Generation of thousands of sigma points at every time step

therefore forms a major obstacle.

10 This is a general type of Kalman filters using random numbers to sample the prior and posterior probability
distribution. Examples of such filters are the ensemble and the particle Kalman filter.
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Figure 3.7: A diagram showing the difference between the unscented and Monte Carlo type filters. (Left) many

sigma points are chosen at random. The large number of points allows to reconstruct the distorted distribution

and approximate a Gaussian which represents it. All points are equally weighted. (Right) The few sigma points

are passed through the Unscented Transform (UT). Adapted from [33].

The Unscented Kalman filter (UKF) was chosen as the main tool for inferring the state of the par-

ticle. Similarly to a Monte Carlo based approach described above, the filter relies on sampling the

nonlinear distribution. However, in this case the filter relies on a deterministic sampling scheme

of sigma points [34]. The Unscented Kalman filter can be sufficiently accurate, but in most cases

only requires only a few sigma points per dimension of the problem [35], making it highly robust.

This is depicted in figure (3.7). Similar accuracy to Monte Carlo type filters is achieved due to a

clever weighting of the few sigma points that are selected. For the remainder of this section an

outline of the changes to the Kalman filter that implements the Unscented Kalman filter.

In the Unscented Kalman filter, the state extrapolation, state update and the Kalman gain

are computed differently. Starting from the prediction step, a set of N sigma points Xi =

[X0,X1, ..,XL]Ti are selected, where L is the dimension of the state vector and i = 0, .., N .
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In addition, 2 weights Wm
i and W c

i are selected for each sigma point, which need to satisfy,

N∑
j=0

Wm
j = 1,

N∑
j=0

W c
j = 1.

(3.50)

The weights are used to compute the mean and covariance of the transformed sigma points,

which is discussed below. There is no strict rule for selecting the sigma points and the weights.

Rather, the user is free to select the number and position of the points that will suit the problem.

Commonly, the choice is simplified with the use of functions which choose the numbers, positions

and corresponding weights of the points, controlled by user set parameters. For the purpose of

this study, the sigma points and their weights were selected using the popular parametrisation

first introduced by Eric A. Wan and Rudolph van der Merwe [33],

(X0)k = x̂k,

(Xi)k = x̂k +

(√
(L+ λ)P̂k

)
i

, i = 1, ..., L

(Xi)k = x̂k −
(√

(L+ λ)P̂k

)
i−L

, i = L+ 1, ..., 2L

Wm
0 =

L

L+ λ
,

W c
0 =

L

L+ λ
+ (1− α2 + β),

Wm
i = W c

i =
L

2(L+ λ)
i = 1, ..., 2L

(3.51)

where L is the dimension of the state vector, α is a user parameter which determines the spread

of the sigma points, λ = α2(L + κ) − L is a scaling parameter with another secondary scaling

parameter κ. β encompasses the prior knowledge of the distribution of x̂k. (
√

(L+ λ)P̂k)i is the

ith row of the matrix square root.

Once the sigma points and weights are generated, the a priori estimate for the current time

step is generated by first passing the sigma points through a nonlinear function f(·) describing

the system dynamics,

(Yi)k = f((Xi)k−1). (3.52)
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Then, the a priori state estimate and variance are generated using,

xk =

2L∑
i=0

Wm
i (Yi)k,

Pk =

2L∑
i=0

W c
i ((Yi)k − xk)((Yi)k − xk)T + Q.

(3.53)

In UKF this step is called applying the Unscented transform11. The a posteriori estimate is

generated very similarly, by first passing the transformed sigma points (Yi)k through a nonlinear

function h(·) encompassing the measurement model,

(Zi)k = h((Yi)k). (3.54)

A Gaussian distribution corresponding to the measurement is then approximated with the mean

and covariance,

(µz)k =

2L∑
i=0

Wm
i (Zi)k,

(Pz)k =

2L∑
i=0

W c
i ((Zi)k − µz)((Zi)k − µz)T + R.

(3.55)

The posterior estimate is obtained in a similar fashion to equation (3.45),

x̂k = xk + Kk(zk − (µz)k), (3.56)

but with the Kalman filter calculated using,

Kk = (Pxz)k(Pzz)
−1
k (3.57)

where,

(Pxz)k =

2L∑
i=0

W c
i ((Yi)k − xk)((Zi)k − µz)T,

(Pzz)k =

2L∑
i=0

W c
i ((Zi)k − µz)((Zi)k − µz)T + R.

(3.58)

This is analogous to how the Kalman gain was computed in the previous section, as it can be

thought of as quantifying the belief in the measurement zk relative to the prior estimate. Lastly,

the posterior covariance is generated with,

P̂k = Pk −Kk(Pz)kK
T
k , (3.59)

11 The name ‘unscented‘ given to the algorithm bares no technical significance; It is an arbitrary name given to
the algorithm by its creator Jeffrey Uhlmann.
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which is the last change to the original Kalman filter, allowing now to implement the Unscented

Kalman filter. Section 6 focuses on the specifics of how to apply the UKF algorithm to the

problem of transferring the particle between intensity maxima, code for which was provided in

the appendix section 8.3. The next section focuses on describing the apparatus used in particle

trapping and explains their principle of operation.
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4 Apparatus

The experiment was built mostly using a single mode optical fibre, carrying TEM00 mode industry

standard 1550nm light. A single mode fibre consists of a thin pure silica core which contains the

laser light, surrounded by protective cladding. The 1550nm laser was generated using a fibre

seed laser12 and amplified using Erbium-doped fibre amplified (EDFA). This section discusses the

principle of operation and usefulness of the tap coupler and the circulator - two key fibre optic

components used in the experiment. A brief description of the vacuum system is also provided.

The final section 4.4 describes the principle of operation of the vibrating-mesh nebuliser which

was used to load the particle into the trap site.

4.1 Tap Couplers

Figure 4.1: Spatial distribution of power in a 2D simulation of the power transfer in a tap coupler for three

different separations of two optical fibres. A flow of energy was initiated in IN-1 (as in figure 4.2) which leaks to

ports OUT-1 and OUT-2 via the evanescent field.

Tap couplers are optical fibre components which were used in the experiment to passively

measure and reduce the power of the passing optical signal. The principle of their operation is

the exploitation of power leakage of an evanescent field from one optical fibre to another in its

vicinity. The amount of power which leaks through depends on the separation of cores of the two

optical fibres. This phenomenon was demonstrated in figure 4.1. It shows that the division of

12 LN-focus-32
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power is highly sensitive to the separation of the fibres and can be finely tuned to achieve the

desired effect. When the fibres are separated by a larger distance, less evanescent field couples

to the second fibre. In the experiment, optical couplers were used to monitor powers at different

points in the experimental setup and to reduce the power across vulnerable components such as

the photodiode. Couplers are usually referred to by their power division ratio sometimes expressed

in decibels (see figure 4.2)

Coupler Losses (dB)

OUT-1 OUT-2

IN-1 0.5 10
IN-2 10 0.5

IN-1

IN-2

OUT-1

OUT-2
1:10

Figure 4.2: (Left) Example of losses in a tap coupler connecting different ports. (Right) Diagram of a tap coupler.

The label ’1:10’ indicates the power division between ports OUT-1 and OUT-2

4.2 Circulators

Circulators are fibre optic devices used in the experiment to rectify and direct backscattered light,

ensuring that the components which cannot handle high powers do not get damaged. Light mov-

ing through a circulator has a direction-dependent output. Figure (4.3) shows the three paths

that characterise the circulator used13 in this project.

PORT 1 PORT 1

PORT 3

PORT 3

PORT 1

PORT 2

PORT 3

PORT 2

PORT 2

×

×

Beamsplitter

Phase plate

Faraday rotator

Birefringent material

Reflector

Figure 4.3: Light travel paths in a three-way circulator. Separated beams are always recombined at the output.

In this design light travelling from PORT 3 to PORT 2 (bottom) is filtered out.

The principle of operation of the optical circulator is based on the clever arrangement of a Faraday

13 Model no. HCIR-3-P-1550-900-1-1-NE-5.5x50-5W
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rotator and birefringent materials to yield a direction-dependent output. The beam is split into

two orthogonal polarisations and recombined at the output, as much more energy is lost if instead

unwanted polarisations of light are discarded [36]. The splitting and manipulations of orthogonally

polarised light is done using a beamsplitter and 45◦ birefringent materials respectively, as shown in

figure (4.3). Due to imperfections in manufacture, the polarisation-dependent components some-

times allow the light to pass through the wrong port. This small error amounts to about a 50dB

power leaks through to a wrong port.

4.3 Vacuum System

Trapping of the nanoparticle took place in a vacuum chamber, evacuated using two pumps oper-

ating in different pressure regimes - a scroll pump (Edwards nXDS6i) used to bring the pressure

down to about 10−2 mbar from atmospheric pressure, and a turbo pump (Pfeiffer HiPace 80)

to further lower the pressure to about 10−11 mbar.

Pressure was controlled using two valves, as shown in figure (4.4). Mainly, the pressure was

controlled using the fine pressure control valve ((R1) in the figure) installed to be used with the

flange gate connecting the trap site and the pumps closed. The coarse pressure control valve can

be used to lower the pressure in the chamber ((R5) in the figure) but it usually resulted in the

particle being lost due to turbulent flow. Although slow, controlling the pressure using the pres-

sure valve led to the fewest losses of the particle during trapping, allowing to initiate the turbo

pump when low enough pressure was reached.

Figure 4.4: A front and back view picture showing the vacuum chamber used for trapping (Left) Front view

(L1) Flange opening used to introduce the nanoparticles into the trap (L2) Valve used to seal the flange gate (L3)

Viewport onto the hemispherical mirror/lens (L4) Flange opening through which the lens was mounted (Right)

Back view (R1) Fine pressure control valve (R2) Pressure gauge (R3) Scroll pump valve (R4) Turbo pump (R5)

Coarse pressure control gate valve

Live pressure measurements were obtained using a (Leybold ITR 90) gauge. This is a hot cathode

ionisation gauge - an electron current emitted from a heated filament collides with gas molecules
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from the chamber. The current of ionised molecules is then measured which translates to a pres-

sure reading. Pressure readings produced above around 300 mbar were highly fluctuating and

unreliable, but still served as a rough guide in controlling the pressure valves.

4.4 Nebuliser

Loading of the particle into the trap site was achieved using a medical nebuliser. This approach has

proven to be very effective relative to alternative approaches involving the particle being attached

to a substrate. In those approaches precise control of nanoscopic forces is required to overcome

Van der Waals attraction. The small size of the trapping region introduces many technical diffi-

culties to the process of removing the particle from the surface. On the other hand, the nebuliser

produces an aerosol of slow-moving nanoparticles, able to be captured in the laser focus. Even if

loaded from a large distance, the high spread of nanoparticles can be contained using a shield, as

was done in the experiment (See section 5.5). This ensured that the aerosol dispersed only in a

small region around the focus of the beam.

Figure 4.5: Diagram showing operation of the nebuliser. Adapted from [37].

The principle of operation is depicted in figure (4.5). A liquid solution containing nanoparti-

cles is brought in contact with the mesh. The piezoelectric element causes the mesh to vibrate,

forcing single droplets of the liquid through the laser-drilled conical holes. A solution is prepared

such that each droplet contains one or no nanoparticles on average.
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5 Experimental Work

Experimental work in the project began with building a setup for the purpose of alignment of

the laser beam with different optics. Figure 5.1 (Left) shows the first and very brief stage of the

experiment used to align the laser beam with a flat mirror. This setup was used as a learning tool

for the experimental techniques as well as to identify any hidden power losses. Progressing towards

trapping with hemispherical mirror, figure 5.1 (Right) shows the next stage of the experiment in

which the collimator was instead aligned with a hemispherical mirror, mounted in the vacuum

chamber. A plano-convex lens was later introduced. Alignment at this stage is described in more

detail in section 5.1.

The ultimate goal of the project was to trap a nanoparticle in vacuum with position readout,

then explore the possibility of Rayleigh scatter suppression. This final stage and trapping with

the hemispherical mirror was never reached. Although Rayleigh scatter suppression was not con-

sidered, nanoparticles were successfully trapped as described in section 5.5. All the work done

involving the mirror is also documented in the following sections.

Seed Laser

1:10

Circulator

1:1000

Collimator

Power Meter

Mirror

CCD 
Camera

Beam
splitter

t

Seed Laser

1:10

Circulator

1:1000

Collimator

Power Meter

Vacuum Chamber

CCD 
Camera

Mirror

Lens

Beam
splitter

Figure 5.1: Alignment stage of the experimental setup. The 1550nm laser was directed to the collimator. Back-

reflected light was directed to the power meter. Live CCD camera image observation was used to aid alignment.

Left Alignment with the flat mirror Right Alignment with the hemispherical mirror and a plano-convex lens. The

vacuum chamber at this stage was not evacuated.

5.1 Lens and Hemispherical Mirror Alignment

In preparation for the final stage of the experiment the first objective was to align the hemispherical

mirror with the output beam from the collimator and measure the back-reflected light coupled

back into the collimator. The mirror was mounted inside the vacuum chamber from the previous

experiment conducted at the lab. Alignment was done by adjusting the position of the collimator
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which was placed in a 3-axis translation mount and with aid of a fluorescent beam card. A pellicle

beam splitter was placed between the collimator and the mirror to direct a fraction of the light

towards a CCD camera. Position changes were based on the CCD camera image which, upon

good alignment, showed the Arago spot and rings produced by diverging laser light (see figure

5.2). The distinct pattern arises as a consequence of Fresnel diffraction, when light shines on

a circular obstacle. The diverging laser light produced the brighter area around the rim of the

hemispherical mirror. After successful alignment, a plano-convex lens was introduced between the

collimator and the window of the vacuum chamber. Alignment was repeated for the lens, also

placed on a 3-axis translation stage.

Figure 5.2: The Arago spot with rings produced by the diverging light captured using the CCD camera upon

alignment of the laser beam with the hemispherical mirror (as in figure 5.1 (Right) but without the lens in place).

The laser beam overfills the circular aperture corresponding to the hemispherical mirror, indicated by the brighter

area around the rim.

5.2 Choice of Lens

The two lenses used in the experiment were the plano-convex and the aspheric14, with focal

lengths of 200mm and 1.49mm respectively. Initially, the plano-convex lens was used. This was

an attractive alternative over the aspheric from time constraint perspective, since due to its long

focal length, it could be placed outside the vacuum chamber. Since the ultimate objective of the

experiment is to trap a particle in the vacuum, mounting the aspheric would require a specialised

custom-made mount that would fit inside the vacuum chamber. Since the focal length is much

greater than the diameter of the lens, the plano-convex lens is also well described by the Gaussian

beam model, ensuring a predictable shape of the standing wave intensity maxima which do not let

14 Mounted Geltech Aspheric Lens C710TMD-C, Thorlabs
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the particle escape. In practice, trapping was not successful with the plano-convex. The reason

for this before moving onto the aspheric lens was not analysed, but it was most likely due to

insufficient intensity at the focus, not strong enough to support the particle.

Having a much smaller Rayleigh range, the aspheric lens produced a much tighter focus and

eventually allowed to successfully trap the particle at the final stage of the experiment. Whilst

there is always a solution where the beam and mirror surface curvatures match, the result derived

in section 3.2, shows that a beam with small zR has its focus coincide with the geometric focus

of the mirror. This is highly favourable for when the RPSN from Rayleigh scatter suppression is

considered. There is however one primary concern when considering this choice of lens for particle

trapping. The particle is very sensitive to the gradient of the intensity. Since NA=0.53 for the

aspheric, the paraxial approximation may no longer be valid. Hence, it is reasonable to question

whether the Gaussian beam model is still applicable. It is not clear to what extent it affects the

intensity profile of the beam, and testing this in a finite-element simulation would provide useful

information.

5.3 Fibre Optics

The 1550nm seed laser generated a power output of about 50mW. Flow of power in the experiment

was controlled and monitored using the two primary fibre optic components - the tap coupler and

the circulator. The first tap connected to the seed laser was used to split the power of the laser

between the two experiments being conducted simultaneously in the lab. When using the ampli-

fier in the later experiments, this tap also ensured that the amplifier input was below maximum

specified by the manufacturer15. Since the manual recommends an input between -10dBm and

16dBm, a 1:10 tap was selected to fit in the range. The 10% power end used when using the

amplifier and the 90% was used for alignment purposes without the amplifier at the earlier stage

of the project. A low-loss (1:1000) tap was added between the circulator and the collimator to

help detect hidden power losses. It is worth mentioning that although the tap couplers were sold

as ones with 1:10 or 1:1000 power splitting, the test sheets corresponding to individual devices

used in the lab have differing losses as stated on the test sheets. This is due to imperfections

during manufacture.

The third tap connecting the circulator and the measuring devices was inserted to use the pho-

todetector and the power meter at the same time. The power meter provided a power readout

from the back-reflection and allowed to measure the power output to determine whether it is

within the recommended input range of the photodetector before it was connected. The linear

15 BKTEL, Model no. HPOA-S
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amplification regime of the photodetector used16 saturates at 60µW. In anticipation of large mir-

ror back-reflection, the 1:1000 tap was therefore selected. In the end, particles were trapped in

the focus of the lens without the mirror in place, hence large back-reflections were not a problem;

the back-reflected power was in the micro-range, but well below the saturation value. This meant

that the low-loss end can be connected to the photodiode.

Laser power was amplified up to 4W with a minor loss of 0.8dB in the circulator. Optical fi-

bres were cleaved17 and spliced18 with negligible loss introduced. The 29dB ports in the 1:1000

connecting to the collimator were used for power measurements. Since the circulator consists of

polarisation dependent components, about -50dB of light passes through to the wrong port. Due

to high laser power input, the -50dB channel allowed for about 10µW to pass through from the

amplifier to the detection devices, effect of which was manifested as a fluctuating power reading in

the µW range19. This power leakage served as a high-loss channel, allowing for an interferometric

measurement of the Rayleigh back-scatter which passes through the same port. This is illustrated

in figure 5.3.

Seed Laser

1:10

EDFA Amplifier

Circulator

1:1000

Collimator

Photodiode
1:1000

Oscilloscope

Power Meter

Vacuum Chamber

Lens

Paper
shield

E1 + E2E1

E1E2

Figure 5.3: A diagram showing the circulator along with the fields which enter and leave its ports. The thickness

of the arrows indicates the changing magnitude of field amplitudes at different ports.

Field E1 corresponds to the laser leaving the amplifier and entering the circulator. The circu-

lator directs the beam towards the trap site but a small fraction of light passes through the -50dB

channel, serving as a reference signal. Light directed to the trap site interacts with the trapped

particle causing it to Rayleigh scatter. Some of the scattered light is captured back into the colli-

mator and it is what gives rise to field E2. Field E2 differs from E1 by amplitude and phase which

it acquires in the additional distance travelled, which will therefore depend on the position of the

16 200 MHz Photoreceiver series with InGaAs PIN Photodiode HCA-S-200M
17 Fujikura fibre cleaver CT-30
18 Fujikura fusion splicer, FSM-185
19 Reading which is below the saturation threshold of the photodiode
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particle. The two fields can then be written as,

E1(t) = A cos(ωt),

E2(t) = B cos(ωt+ φ(z)),
(5.1)

where A and B are the field amplitudes20 and z is the particle position in the trap along the beam

axis. Field E2 is then directed to the port connected to the detection devices, where it interferes

with the reference signal E1. This constitutes the homodyne measurement scheme; frequencies of

the interfering signals are the same. In this setup, the photodiode measures the phase-sensitive

signal,

V = |E1 + E2|2 ∝ A2 +B2 + 2AB cos(θ − φ(z)) (5.2)

where θ is the additional phase which the scattered light acquires travelling from the particle

all the way back to interfere with the reference field. The interferometric signal could then by

analysed to infer the particle’s position in the trap. In the next section, an estimate was made of

how much power is coupled back into the collimator for different focusing optics. The form of the

signal and the random nature of the random phase θ is expanded on in section 6.2.5, needed for

the development of the measurement model in the unscented Kalman filter.

5.4 Capturing Rayleigh Backscatter

Mie theory is concerned with modelling the scattering of plane waves from a spherical obstacle.

Rayleigh scattering, as a limit to Mie theory, is a useful simplification when the electric field does

not vary significantly across the particle. It is useful for the system considered in this project, since

the nanoparticles used, with a radii of order 100nm, are much smaller compared to the wavelength

used - 1550nm.

One way of obtaining intensity of Rayleigh scatter is by applying the dipole approximation

to Mie theory. It can then be shown that the beam intensity I0, at wavelength λ scattered by a

small sphere of radius r and relative permitivity εr at a certain scattering angle θ corresponds to

a scattered intensity,

I(R, θ) = I0

(
2π

λ

)4(
εr − 1

εr + 2

)2

r6

(
1 + cos2(θ)

2R2

)
, (5.3)

where R is the distance between the scatterer and the observation point. Factor of 1 + cos(θ)2

captures all the behaviour of the scattered intensity with the changing scattering angle; the in-

tensity is maximum for at 0◦ and 180◦ with respect to the incoming beam and minimum at ±90◦.

This was illustrated in figure (5.4), which shows the Rayleigh scattering from particle in a gen-

20 Note that the values of A and B are different at different ports in figure 5.3
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Figure 5.4: Diagram demonstrating the optical arrangement near the mirror, along with Rayleigh-scattered light

from a trapped nanoparticle at the focus of the incoming beam. Scattered light is collimated to the left by the

plano-convex lens in the same way it is focused in the reverse direction. The crimson line shows the magnitude of

the scattered intensity (see equation (5.3)) with respect to the scattering angle.

eral optical arrangement considered for this project. Equation (5.3) can be integrated over the

solid angle to obtain the scattered intensity in a given direction. In particular, it can be used

to determine the expected power from Rayleigh backscatter. Assuming that the backscattered

light remains collimated after passing through the lens, in a perfectly aligned arrangement, the

intensity collected by the collimator is equivalent to considering the collimator at the position of

the lens. Intensity collected back into the collimator is therefore given by the integral of equation

(5.3) for a solid angle Ωc spanned by the diameter of the collimator dc at focal length f of the

lens,

Icollected =
I0
2

(
2π

λ

)4(
εr − 1

εr + 2

)2

r6︸ ︷︷ ︸
C

∫
Ωc

dΩ

(
1 + cos2(θ)

R2

)
. (5.4)

The solid angle in cylindrical coordinates can be written as,

dΩ = R2dφ(.cos(θ)), (5.5)

where dφ is the rotation angle about z direction. The system has cylindrical symmetry about the

axis of the incoming beam (z direction), so dφ will give a trivial integral and z = −f is constant.
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For f � dc the approximation sin(θ) = dc/2f ≈ θ is also valid. Hence the integral from (5.4)

becomes,

Icollected ≈ C
∫ 2π

0

dφ

∫ π−dc/2f

π+dc/2f

d(cos(θ))
(

1 + cos(θ)
2
)

= 4πC

[
cos(θ) +

cos(θ)
3

3

]π−dc/2f
π

(5.6)

The collimator21 used in the experiment has a diameter of 14.9mm. For f = 200mm lens, and

a 1W Gaussian beam focused down to a spot size of w2
0 = (10µm)2 corresponding to the beam

waist, trapping a nanoparticle of fused silica (εr = 2.25) of radius r = 200nm the intensity of the

incident beam is I0 = 1010 Wm−2. From equation (5.6), the backscatter power collected by the

collimator in this case is,

Pcollect =

[
π

(
dc
2

)2
]
Icollect = 2.27× 10−11W (5.7)

Assuming that the beam retains its Gaussian profile after passing through the aspheric lens, a

similar calculation to the above can be done. A short derivation provided in the Appendix gives an

estimate of the waist as a consequence of the paraxial approximation. The result of the derivation

given in equation (3.15) then gives an estimate of w2
0 = (0.99µm)2. Again taking the power

coming out the collimator to be 1W, giving I0 = 1012Wm−2. In contrast to the above calculation,

the aspheric lens underfills the collimator with backscattered light. This is equivalent to setting

dc = daspheric = 2.1mm, giving,

Pcollect =

[
π

(
daspheric

2

)2
]
Icollect = 138nW (5.8)

The photodetector used22 has a noise equivalent power of 5.2pW/
√

Hz. Both of the estimates

exceed this value, indicating that the lenses are suitable for detecting Rayleigh backscatter.

21 Triplet Collimator TC18APC-1550, purchased from Thorlabs
22 200 MHz Photoreceiver series with InGaAs PIN Photodiode HCA-S-200M
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5.5 Trapping the Nanoparticle

Seed Laser

1:10

EDFA Amplifier
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1:1000
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Power Meter

Vacuum Chamber

Lens

Paper
shield

Figure 5.5: Final experimental setup used for trapping the nanoparticle. Red lines represent optical fibres. The

laser beam (green) enters the vacuum chamber through a glass window. The plastic tube (orange) was used to

spray the nanoparticles into the vacuum through the side vacuum door. The white line stopping the laser beam

around the lens represents the cross section of a cylindrical paper shield with a small opening on the side used to

contain the spread of the nanoparticle aerosol. (A) Picture of the lens with the paper shield attached. (B) Picture

taken of the aerosol spray into the vacuum chamber during a trapping attempt.

Trapping of the nanoparticle was achieved using the setup in figure (5.5). The particles were

loaded into the trap site with a commercial nebuliser; sprayed in using a narrow plastic tube

through the side door of the vacuum chamber. Initially, the nebuliser contained a highly diluted

solution of silica nanoparticles suspended in ethanol [38]. However, this solution did not seem to

produce a good aerosol with the nebuliser used23. The diluting liquid was replaced with distilled

water which allowed for successful trapping. Whether a particle was trapped successfully was in-

dicated by the signal waveform generated by the oscilloscope. The power spectral density (PSD)

was also generated live from the time samples (see figure 5.6).

In the left of figure (5.6) there is a sharp spike at 0Hz, which usually corresponds to a DC

offset. The periodic peaks of the signal’s power spectral density on the right of figure (5.6) arise

as a result of the shape of the PSD corresponding to particle’s position Sxx encoded in the signal

of the form in equation (5.2). Rigorous analysis of the shape shown in figure 5.6 is non-trivial [31]

if one is to accurately deduce more than just basic quantities. However, the signal PSD can be

inspected to easily obtain the trap frequency as the peaks are separated by Ωz. The width of the

peaks also indicates the magnitude of the local pressure. The minimum attainable pressure with

23 OMRON MicroAir U22
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Figure 5.6: Snapshots of the PSD obtained during trapping of the particle at different pressures Left Pressure

310 mbar measured with a hybrid Pirani gauge (Pfeiffer ITR90) Right Pressure ∼ 0.1 mbar. The snapshot was

taken during a time when the pressure gauge was not available.

the vacuum pump used (Edwards nXDS6i) is 0.020 mbar, and the emergence of peaks indicates

significantly lower pressure than in the figure on the left. Width of the individual peaks gives the

damping rate, from which pressure can be estimated. Using results from [15] the pressure can be

estimated to be about 0.1mbar.
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6 Site Hopping

Since the loading process utilises the nebuliser, it does not allow for a precise control of the initial

position of the particle in the trap. Once the aerosol is ejected, the particle follows a random

walk towards the trap site. The particle can therefore land at a random site within the trap.

However, precise control over particle position is required as Rayleigh scatter suppression would

only occur for a particle trapped in a maximum in the vicinity of the geometric focus of the mirror.

Lens

Hemispherical 
mirror

Heater 
plate

A  B  C 
 

Figure 6.1: Zoom-in diagram of standing wave intensity maxima near the primary maximum, with a particle

(blue circle) trapped at site B. In the diagram, trap site C is the geometric focus of the hemispherical mirror, where

Rayleigh scatter suppression would occur. The particle is made to move ballistically from site A to B to C by

modulation of intensity.

In this part of the project ballistic transfer scheme is designed to overcome this problem. The

problem and the intended transfer is illustrated in figure 6.1. Motion of the particle is initially

excited, after which the laser is switched off for a short period of time. This allows the particle

to follow a parabolic path under the influence of gravity, akin to throwing a macroscopic object.

Ballistic transfer from one site to another is simulated by first initiating the state of the particle

(position and velocity) in 2D, at a random site with the centre maximum of the Gaussian beam

standing wave with zero velocity. The particle in the simulation is subject to forces due to inten-

sity gradient of the beam and random kicks provided by the environment at atmospheric pressure.

State of the particle is evolved in time by applying the Euler-Maruyama method to the stochastic

differential equation which governs the dynamics of the particle (See Appendix section 8.1). The

effective intensity is encoded as I
′
(t, x) = M(t)I(t, x) where I(t, x) is the intensity of the incident

beam interfering with its retro-reflection and M(t) is the modulation function controlled by the

AOM. Primary focus of this part of the project is to transfer the nanoparticle to an adjacent

maximum of choice with high probability of success. In the first approach in tackling the problem,

the modulation function M(t) allows for transfer of about 2/3 of simulated particles into adjacent

maxima without control of the direction, (see figure (6.2)) and it is implemented as follows:
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1. Allow the simulated particles to thermalise or initiate a thermalised data set, after

which turn on M(t).

2. Parametrically excite the particles’ motion for time T using the sinusoidal function

M(t) = 1 + β sin(Ωmt) where Ωm is the modulation frequency.

3. After time T , turn the laser off for a duration of τ . Equivalently, M(t) = 0 for

T ≤ t < T + τ .

4. After time τ turn the laser back to normal mode of operation; M(t ≥ T + τ) to let

the particles thermalise.

In the above, Ωm = 4π×793kHz (about twice as large as the trap frequency Ωz) and β, T, τ are

adjustable parameters. Figure (6.2) shows unacceptable accuracy, succeeding only about a third

of the time in transferring the particle to the site of choice. The simplistic approach presented

above has to be refined in order to reach a greater degree of accuracy. The remainder of this

section explores this possibility by utilising a powerful data analysis technique.
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Figure 6.2: Simulated trajectories for 100 nanparticles with β = 0.3, T = 30µs and τ = 2.5µs. The damping rate,

which controls the rate at which random kicks are applied to the particle was set to Γ = 100kHz. Left Intensity

contour plot overlapped with particle trajectories in the x-z plane. Right z-coordinate plotted against time

6.1 Problem Statement

As evident by the results shown above, the direction of the particle throw cannot be controlled.

Particle is initiated at a random position which captures the fact that it behaves stochastically.

Although it exhibits damped harmonic motion, it is subject to a random force and its initial

position is unknown. It can be seen in figure (6.2) that setting T and τ to a constant value yields
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only about a 1/3 to transfer to the correct maximum. If however, the position of the particle in

the trap could be deduced, the parameters could be adjusted to let the particle go at a time such

that it reaches the preferred adjacent maximum with sufficiently high probability. This can be

achieved by analysing the data collected live during trapping with a device fast enough to perform

real-time analysis. Tracing the particle’s position in the trap would then allow to determine the

suitable parameters needed to transfer the particle. The following sections explore the method of

inferring particle position within the trap using the measured signal, and using this information to

select an appropriate release time. The primary tool used to achieve this is a statistical algorithm

called the Kalman filter. The linear Kalman filter is fully discussed in the section 3.6 as it forms a

basis for more general implementations. For reasons outlined in section 3.7, the modified version of

the Kalman filter had to be used - the Unscented Kalman filter (UKF). What follows is a detailed

description of how the problem was encoded for the operation of the UKF.

6.2 Implementation

6.2.1 State Representation

As the primary quantity of interest is the current position and direction of travel, the state could

be chosen to be represented as a 2-dimensional vector of position and velocity along the beam

axis. However, the path length between the particle and the reference signal fluctuates due to

mechanical and thermal vibrations in the fibre. Dynamics of this random fluctuating phase θ in

the fibre pollute the measurement hence their description needs to be included in the model. The

state was therefore represented as a 4-component vector,

xk =


z

ż

θ

θ̇


k

. (6.1)

where subscript k indicates the discrete time step. The corresponding covariance matrix then

follows to be represented as,

Pk =


σ2
zz σ2

zż σ2
zθ σ2

zθ̇

σ2
żz σ2

żż σ2
żθ σ2

żθ̇

σ2
θz σ2

θż σ2
θθ σ2

θθ̇

σ2
θ̇z

σ2
θ̇ż

σ2
θ̇θ

σ2
θ̇θ̇


k

, (6.2)

where σ2
AB is the covariance defined as E[(A− E[A])(B − E[B])]24.

24 ‘E’ denotes the expectation value as usual
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6.2.2 Initial Values

Initial position and velocity are unknown however UKF can still perform effectively with only

a rough estimate. For convenience, all results were obtained with the initial position set to the

actual starting site of the particle and zero velocity. Phase is also initialised at 0, which was its

actual initial value. No knowledge of θ̇ is assumed hence the initial a posteriori state takes the

form,

x̂0 =


0

0

0

0


0

. (6.3)

which can be compensated for by setting a sufficiently high initial error. In general, a high

uncertainty in the initial state causes the filter to be prone to divergence. This was avoided in this

study by assuming a good knowledge of the initial state. A more realistic scenario is discussed in

more detail in section 6.4. The covariance of the initial state is set to be uncorrelated among the

state components. This is not accurate in general but is sufficient for the filter input. As the filter

progresses, correlation will develop naturally between different state components as described by

the system dynamics. From system dynamics, no cross correlation is expected between the phase

and position and their respective rate of change, hence the initial covariance was represented as a

block matrix,

P̂0 =

 P̂z 0

0 P̂θ


0

, (6.4)

where P̂z and P̂θ are 2×2 covariance matrices describing (z, ż) and (θ, θ̇) respectively, 0 is a 2×2

matrix with zeroes in all elements and P̂0 is a 4×4 initial covariance matrix describing the entire

system. A discussion now follows on how the sub-matrices were chosen to represent the initial

covariance.

The position of the particle along the beam axis is known to be somewhere around (0 ± 10)µm

with similar magnitude of error in the velocity. Hence the initial covariance matrix was first set

to,

P̂z =

 1 0

0 1


0

× 10−10. (6.5)

Despite an accurate representation of the initial posterior knowledge, a value too large for the

initial covariance can cause the filter to diverge [32]. It is appropriate to set the initial covariance

to be artificially small to prevent the filter from diverging25. This means that the filter will under-

25 If the discrepancy between the actual site and initial site estimate is too large, the filter will still diverge even if
the error is underestimated.
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perform in the initial set of iterations, but the divergence can nonetheless be avoided26. Indeed,

this was the case for the choice in equation (6.5) and a lower value for the covariance was needed.

Instead the following choice was used,

P̂z =

 1 0

0 1


0

× 10−13. (6.6)

Here in equation (6.7) correlation is expected, but the initial covariance was assumed to be

uncorrelated. This is sufficient for the initiation but is be accounted for later when modelling the

process noise.

A similar problem arose when choosing the initial phase covariance is modelled in a similar fashion.

At first the initial variance was assumed to be equal to (π/2)2 given no knowledge of the phase

since θ = 0±π/2. Again assuming no initial correlation, the phase covariance was represented as,

P̂z =

 1 0

0 1


0

×
(π

2

)2

. (6.7)

However, this led to divergence in many cases hence a value much smaller than one was chosen

to represent the initial covariance instead. The phase drift is a measurable quantity hence its

accurate initial knowledge is not unrealistic (See section 6.4). The overall system covariance P̂k

was then constructed as in equation (6.4).

6.2.3 System Dynamics Model

Position z and phase θ do not influence each other dynamically. The following description consid-

ers the development of the dynamics model separately for the two quantities and combines them

at the end.

As outlined in section 3.4 the particle follows harmonic motion modulated stochastically with

random kicks provided by the environment,

z̈(t) + Γż(t) + Ω2
zz(t) =

F (t)

m
(6.8)

The random force is modelled as process noise as it is a form of unaccountable influence on

the dynamics of the particle. This is a linear model hence it can be modelled identically to the

standard linear Kalman filter. Firstly, the second order differential equation in (6.8) is converted

26 Underestimating the initial position state can also introduce global bias. However, this is not a problem in this
study since only direction of travel and velocity magnitude are relevant.
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to a 2 dimensional first order system,

ẋ =

 z

z̈

 =

 0 1

−Ω2 −Γ

 z

ż

 = Ax. (6.9)

Equation (6.9) has to be transformed from the continuous state space model to a discrete time

based model. In other words, given an equation of the form ẋ = Ax we wish to find matrix F

containing a time step ∆t that will evolve or predict the state recursively for the next time step

k 7→ k + 1,

xk+1 = Fxk. (6.10)

In general, for a multi-dimensional linear system, the solution is given by,

F = eA∆t = I + A∆t+
(A∆t)2

2!
+ ... (6.11)

This can also be seen to arise by considering the approximation,

ẋ = Ax(t) ≈ x(t+ ∆t)− x(t)

∆t
,

x(t+ ∆t) ≈ (I + A∆t)x(t),

(6.12)

where the term in parentheses is the approximation used for the matrix F,

F =

 1 ∆t

−Ω2
z∆t 1− Γ∆t

 . (6.13)

In the case that 1 � Ω2
z∆t,Γ∆t the approximation (6.13) would suffice as the description of the

dynamics, however this is not the case and therefore the full exponential has to be used. When

fully expanded, the dynamics matrix for the particle position becomes,

Fz =
e−Γ∆t

Ω

 Ω cos(Ω∆t) + Γ sin(Ω∆t) sin(Ω∆t)

−Ω2
z sin(Ω∆t) Ω cos(Ω∆t)− Γ sin(Ω∆t)

 , (6.14)

where Ω =
√

Ω2
z − Γ2.

Thermal drift in the fibre translates to Brownian-like motion of the phase offset. Phase θ can

be modelled to behave as a damped harmonic oscillator with a stochastic driving term where the

frequency of oscillation goes to zero. It can be described by the differential equation,

θ̈(t) + γθ̇(t) = γ(t), (6.15)

where γ(t) is a stochastic (Weiner) process. Following the same steps as for the dynamics of the
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particle, the phase’s dynamics are governed by,

Fθ =

 1 e−γ∆t

γ

0 e−γ∆t

 . (6.16)

The recursive evolution of the 4-dimensional state vector is then fully described by the matrix,

F =

 Fz 0

0 Fθ

 , (6.17)

similarly to how the initial covariance matrix was constructed. In the standard Kalman filter, F

would then be used to find the a priori estimate,

xk+1 = Fx̂k, (6.18)

however UKF takes functions as inputs for the system dynamics and measurement as it generalises

to nonlinear systems, meaning that a small alteration is required to model the system dynamics.

Namely, a function is programmed such that,

f((Xi)k) = F(Xi)k = (Yi)k. (6.19)

where (Xi)k is the ith sigma point at time step k. Notice that the random force F (t) was not

included in the description of the dynamics. This is because the filter will instead compensate

by adding uncertainty to the state of the particle at every time step in the form of process noise.

Formulation of the process noise is the subject of the next section.

6.2.4 Modelling Process Noise

It was mentioned in the previous section that in order to accurately model the process noise,

the covariance of the state estimate has to include correlated terms. This can be achieved using

the piecewise noise model in which the noise varies between different time steps, but is assumed

constant within the duration of the time step. In context of the particle moving in the trap, the

random force is assumed to provide constant acceleration kicks, but random between different

time steps. In the standard Kalman filter this would be represented as, 1
2∆t2

∆t

wk, (6.20)
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as an added term to the state extrapolation equation (as described in section 3.6). From equation

(6.20) the process covariance is then constructed with,

Qz = E


 1

2∆t2

∆t

wk

 1
2∆t2

∆t

wk

T
 = σ2

z

 ∆t4

4
∆t3

2

∆t3

2 ∆t2

 . (6.21)

In equation (6.21) σ2 is the process variance, serving the purpose of a tuning parameter. It can

be estimated by considering how the random force arises but it can also simply be tuned during

simulation. An appropriate value of the process variance is necessary for the filter to work. The

values chosen for the operation of the filter σ2
z = 1012 was found by tuning such that the best

performance was achieved relative to the true trajectory. In a realistic scenario the true trajectory

is not available but the choice found in simulations can be used or a theoretical estimate could be

made.

The above description was concerned with the position and velocity, but it can by equally well

applied as a model of the process variance in the phase. The overall process variance was expressed

as a block matrix,

Q̂ =

 Qz 0

0 Qθ

 , (6.22)

where Qθ where taken to have process variance of σ2
θ = 1025, which was found to perform well.

6.2.5 Signal Simulation and the Measurement Model

As discussed in section (5.3), the experiment generates an interferometric signal of the form,

V ∝ A2 +B2 + 2AB cos(θ − φ(z)). (6.23)

Phase φ(z) is sensitive to the axial position z27 and θ is some phase offset. φ(z) is modelled by the

linear relationship φ(z) = κz where κ is some phase sensitivity dependent on the optical geometry

and the wavelength of the laser used. A collimated beam has its phase evolve at a rate equal to

the wavenumber k, but the Gouy shift of the highly focused laser beam slows the evolution of the

phase. However, as the experiment concerns a backscatter geometry, not all light experiences the

Gouy shift. Rayleigh backscattered light is not highly focused and its phase evolves at the regular

rate k (See figure (6.3)). The sensitivity κ for the interferometric signal can then be approximated

as the phase for a round trip as, [31]

27 This is due to the optical arrangement - it is symmetric about the beam axis and the laser field induces a dipole
in a transverse direction. The intensity coupled back into the collimator by a transversely displaced particle is
mostly invariant as the intensity pattern (I ∝ 1 + cos2(·)) is aligned along the beam axis.
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Figure 6.3: Cross section of the simulated geometry. Blue line indicates the outline of the laser beam . The

red node indicates the position of the nanoparticle in the trap. The red lines indicate the wavefronts of Rayleigh

scattered light moving radially. The rates of phase evolution are also indicated, according to the respective colours.

Note that the particle doesn’t scatter with equal intensity in all directions (as in section 5.4) but nonetheless it

scatters radially.

κ ≈ k + k′ = 2k +
1

zR
, (6.24)

where k′ is the Gouy shifted rate of phase evolution of a Gaussian laser field. Phase θ encodes

the additional distance that the laser field travels to reach the particle; Choosing the focus of the

laser as the reference point, then θ = [f + (...)]. f is the focal length of the lens in free space

and the term in parentheses is the sum of the distance from the lens to the collimator and the

extra distance that the field traverses within the optical fibre. Due to thermal and mechanical

fluctuations, this extra distance within the fibre is subject to fluctuations. This means that θ can

be re-written as some constant corresponding to a fixed distance and a random drifting term,

θ = −π
2

+ θr(t) (6.25)

where −π/2 was chosen for convenience. It then follows that the signal in equation (6.23) can be

written as,

V = V0 sin(κz(t) + θr(t)), (6.26)

where the additive constant terms in equation (6.23) were ignored as they only introduce an invari-

ant offset to the signal. The phase θr(t) encompasses the randomly fluctuating and drifting nature

of the phase and is the state variable evolved as described in section 6.2.3. V0 is the amplitude of

the signal which depends on the sensitivity of the photodiode.

Equation (6.26) gives the expected form of the signal to come out from the experiment. For
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the purpose of the study, the observed signal (or the measurement (Zi)k) was modelled as,

(Zi)k = h((Yi)k) = V0 sin(H(Yi)k) + VG, (6.27)

with VG being Gaussian white noise. VG was chosen to model the measurement noise in the

experiment. Quantity H(Yi)k recovers the simulated measurement in equation (6.26). Matrix

H acts on the first and third vector component of the ith sigma point at time step k (Xi)k

transformed by function f(·) and is simply given by,

H =
[
κ 0 1 0

]
. (6.28)

6.2.6 Choice of Sigma Points

The choice of sigma points boils down to selecting appropriate parameters for the Van der Merwe’s

scaled sigma point algorithm, as explained in section 3.7. This choice however is not well estab-

lished and largly relies on trial and error choices and choices motivated by literature. Choices

made for the simulation performed in this study are summerised in table 1. α controls the spread

of sigma points and its choice can be motivated by the shape of the distorted non-Gaussian distri-

bution. In other words, if the distribution is clustered close to the mean a small value of α close

to zero would be an appropriate choice. The literature indicates that the choice β = 2 is optimal

if the components of the state vector are Gaussian distributed, which is a good description for the

position and velocity of the particle.

Parameter Function Suggested Value Chosen value

α
controls the spread

of sigma points
0 ≤ α ≤ 1 [28, 33] 0.1

β
incorporate prior
knowledge of the
state components

2 [28, 33] 2

κ
secondary scaling
parameter for the

sigma points
0 [33],3− n [28] 1

Table 1: Parameters for the Van der Merwe’s scheme of sigma point selection. n in this case is the dimension of
the state vector.
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6.3 Final Results and Analysis

Inclusion of the Unscented Kalman filter requires a significant change to the algorithm developed

for site transfer, presented at the beginning of section 6. In this section, the development of the

modified algorithm for site transfer is presented along with all the relevant results obtained along

the way.
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Figure 6.4: Position in m against time in µs. Four particle trajectories during the excitation period. Different par-

ticles respond differently to excitation depending on their state before the excitation. Note the order of magnitude

on the vertical axis of the bottom-left plot relative to the others.

The two initial steps of the algorithm remain unchanged - the initiated particle is allowed to ther-

malise after which the intensity modulation function is switched on. Figure (6.4) shows the effect

of excitation on the position of the particle in 4 different initial states28. The particle responds

differently to excitation which is relevant for the application of the Kalman filter described below.

Particle’s motion in bottom-left figure (6.4) is considered not well-behaved compared to the other

three plots. In the other plots and in most cases, the particle’s amplitude of oscillation is rela-

tively high and their motion is thermalised prior to the excitation period. This led to a smooth

28 State in this case means axial positions and velocities akin to the description of Kalman filters developed in the
previous section
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transition to an excited and mostly harmonic state of motion. The particle in the bottom-left

had a relatively low spread in position and its motion was swamped by random kicks from the

environment prior to excitation by intensity modulation. As a result, the particle did not respond

well to excitation and its motion did not transition to a well-behaved harmonic state. This could

have been caused by the constant 20µs period, chosen to allow the particle to thermalise which

may not be enough time in all cases. This feature is likely to be unique to a simulation scenario,

but it is still worth mentioning as it affects the results presented below.

The UKF was applied to a well-behaved and a badly-behaved trajectory of the particle, with

results shown in figures (6.5) and (6.6) respectively. The results can be further improved using a

smoothing algorithm, but this wasn’t done as it requires additional computation time.
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Figure 6.5: Position z in µm against time in µs. Position tracking of a well-behaved trajectory with the signal

simulated for a 44.4µs period for different sample size per µs. The simulated signal consists of 22768 points in the

highest resolution case. The top graph hides the inferred Kalman trajectory of the particle as it perfectly traces

the true trajectory.

Both positions were successfully tracked without divergence, but showing vastly different per-

formance depending on the behaviour of the trajectory. In the well-behaved case of figure (6.5)

position is accurately tracked during, and after excitation period showing a small depreciation in

accuracy for decreasing sample sizes. The filter performs better for the excitation period because

the greater amplitude of oscillation increases the signal-to-noise ratio, making the measurement

noise less significant. When sampling fewer points per microsecond, the filter only performs well

after excitation. However, this is not an issue as UKF is to be applied after excitation. For the

purpose of the simulation, the process variance was tuned to perform well in well-behaved cases.

In the case of figure (6.6), in which the trajectory of the particle is considered not well-behaved,
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Figure 6.6: Position z in µm against time in µs. Position tracking of a badly-behaved trajectory with the signal

simulated for a 44.4µs period for different sample size per µs. The simulated signal consists of 22768 points in the

highest resolution case.

the filter can still track the position accurately at highest resolution. The decrease in accuracy is

more apparent for lower sampling numbers per microsecond. In this case, when fewer points are

sampled per µs the filter no longer is able to track the position as the noise power is of similar

magnitude to the signal containing the information about the position. It is worth noting that

results shown in figure (6.6) were generated using the same process variance as in figure (6.5). In

fact, the accuracy of the filter could have been significantly improved if the process variance was

re-tuned. However, the information on whether the particle behaves well or not is not experimen-

tally accessible prior to the application of the filter. Since the simulations show that the particle

behaves well in most cases, it is assumed that it is the best choice to tune the process variance for

for the well-behaved case which will yield the highest accuracy in most cases of particle trapping.
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Figure 6.7: Position in µm against time in µs. The particle was excited for a duration of 15µs with the excitation

parameter β = 0.2 after which it is allowed to relax. The damping rate Γ = 50kHz. The graph shows that the

harmonic motion of the particle can persist for over 60µs.

In order to transfer the particle to an adjacent site of choice, the following alteration was made

to the original algorithm. Firstly, apply the filter to a small time window of the signal. It can

be seen in figure (6.7) that the harmonic-like motion can persist for long times (on the relevant

time-scale). Therefore, a curve fit to a harmonic solution minimising the residuals is applied to

the deduced trajectory of the particle,

z(t) = z0 sin(Ωzt+ φ0). (6.29)

The fit generates the amplitude z0 and phase offset φ0. The fitted curve is then used to extrapolate

the trajectory forward in time. Since the motion is expected to persist for long periods of time,

the extrapolation is used to compensate for the computation time of the Kalman filter and curve

fitting. The trap frequency Ωz is assumed to be known as it is experimentally accessible. In the

simulation, the frequency was found by fitting to the true particle trajectory. Results of fitting

can be seen in figures (6.8) and (6.9). It can be seen in figure (6.8) that when a particle responds

well to excitation it’s position can generate a very accurate fit for all sample sizes, despite the

lowest resolution consisting of only 24 points in a time window of 7.63µs. Figure (6.9) shows that

a poorly-behaved particle trajectory can still be tracked especially at the highest resolution. For

the lowest sample size, a small phase offset is introduced.

The turn-off time is found by considering points on a sine wave where the harmonic solution

is zero and with positive gradient, as this is the point where the particle moves upwards with the

highest velocity. Choosing the point of turn-off to be equidistant from the peak and the troth also

ensures that the site hopping error due to a phase bias is minimal. Integer n is then chosen such

that the rise point occurs after the final time step of the time window in which UKF is applied,

with an integer N added to account for the computation time. Actual computation time of fil-

tering and fitting was not used to deduce the value of N . Real computation time is too long and

the resources were not available during the project to yield particle dynamics simulation tractable

for that duration. Because of this, a far shorter, assumed computation time was used to obtain

results. A condition on the value z0 is required as the curve fit sometimes finds a negative value
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of the amplitude which simply corresponds to a shift in the sine wave by π.
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Figure 6.8: Position z in µm against time in µs. Filtering and curve fitting over a narrow time window of a

well-behaved trajectory. The signal consists of 4768 points in the highest resolution case for a period of 7.63µs
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Figure 6.9: Position z in µm against time in µs. Filtering and curve fitting over a narrow time window of a

badly-behaved trajectory. The signal consists of 4768 points in the highest resolution case for a period of 7.63µs
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The modified algorithm aiming to transfer the particle one site forward in the positive direction

can be summarised as follows:

1. Allow the simulated particles to thermalise or initiate a thermalised data set, after

which turn on M(t).

2. Parametrically excite the particles’ motion for time tex using the sinusoidal function

M(t) = 1 + β sin(Ωmt) where Ωm is the modulation frequency.

3. Apply the Unscented Kalman filter to a time window of duration TUKF and fit the

deduced trajectory to a harmonic solution in equation (6.29).

4. Use the fitted parameters z0 and φ0 to deduce suitable values of T (the time at which

the laser should be switch off) and τ (duration for which the laser should remain

switched off). The turn-off time are found using,

T =


2nπ−φ0

Ωz
if z0 > 0,

(2n+1)π−φ0

Ωz
if z0 < 0,

(6.30)

where,*

n = ceil

(
Ωztf + φ0

2π

)
+N, (6.31)

tf is the final time step before UKF is applied and N is an integer which encodes the

computation time. The duration for which the laser is switched off is found using,

τ =
Dsite

max(vz)
, (6.32)

where Dsite is the site separation (in the project Dsite ≈ 0.75µm) and max(vz) is the

maximum particle velocity in the z direction inferred using the UKF.

5. After time T , turn the laser off for a duration of τ . Equivalently, M(t) = 0 for

T ≤ t < T + τ .

6. After time τ turn the laser back to normal mode of operation; M(t ≥ T + τ) = 1 to

let the particles thermalise.

‘ceil’ denotes a function which always rounds the number up to the next integer e.g. 2.4 7→ 3.
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Figure 6.10: Application of the modified site hopping algorithm to 100 particle trajectories with the excitation

parameter set to β = 0.2, N = 10 and maximum sampling resolution. (Left) Axial position in µm against

time in µs. (Right) The corresponding histogram of axial position at the final time slice (displayed in a range

-1.2µm ≤ z ≤ 1.2µm for clarity) against the number of particles. The red bars show the approximate locations of

intensity maxima sites. Two points are not displayed as they were located outside the specified range. The transfer

successfully transferred 96% of particles.

Figures (6.10) and (6.11) show the results of using the modified algorithm for different values of

N . Whilst almost perfect accuracy in the case of N = 10, the results show that the delay between

computing the fit and release time has a drastic effect on the accuracy. The technique seems to

lose its accuracy very quickly. It seems to be caused by the mismatch in between the particle’s

velocity upon release relative to the maximum velocity that the particle during the application of

the filter. The method for selecting the value of τ is rather simplistic, assuming constant velocity

and does not account for the particle possibly slowing down upon release. However, the method

for selecting the release time T seems to be particularly effective, as in both cases few to no

particles are released in the opposite direction. This is highly beneficial, since even if transfer

was unsuccessful, the particle most likely remains in its current site and the transfer procedure

can be repeated. This is also the case in figure (6.12), in which a 100 samples were sampled per

microsecond. The figure shows similar performance to figure (6.11). In both cases the decrease

in performance is caused by the poor velocity control; the particle either stays in the centre site

because the laser is turned back on too soon or the particle is too fast after a successful transfer.

This suggests that the simplistic approach of determining an appropriate value of τ could yield a

much greater accuracy, if revised.
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Figure 6.11: Application of the modified site hopping algorithm to 100 particle trajectories with the excitation

parameter set to β = 0.2, N = 25 and maximum sampling resolution. (Left) Axial position in µm against time

in µs. (Right) The corresponding histogram of axial position at the final time slice (displayed in a range -1.2µm

≤ z ≤ 1.2µm for clarity) against the number of particles. The red bars show the approximate locations of intensity

maxima sites. About 10 points are not displayed as they were located outside the specified range. The transfer

successfully transferred 62% of particles.
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Figure 6.12: Application of the modified site hopping algorithm to 100 particle trajectories with the excitation

parameter set to β = 0.2, N = 25 and sampling 100 points per µs. (Left) Axial position in µm against time in µs.

(Right) The corresponding histogram of axial position at the final time slice (displayed in a range -1.2µm ≤ z ≤
1.2µm for clarity) against the number of particles. The red bars show the approximate locations of intensity maxima

sites. Many points are not displayed as they were located outside the specified range. The transfer successfully

transferred 64% of particles.

56



6.4 Experimental Considerations

As mentioned in the Introduction, the particle is to be stimulated to transfer between maxima

of a standing wave by modulating the intensity of the beam. The stimulation can be achieved

experimentally using an acousto-optic modulator whose driving RF signal modulates how much

light is collected from the first-order diffraction beam. Modulating the signal can be done quickly

in comparison to the time scales particle dynamics within the trap (Ω−1
z ) and the RF signal gen-

erator driving the AOM can accept complicated waveforms. Hence, this scheme provides a high

degree of control over the gradient force acting on the particle.

Experimental application of the method requires careful consideration. The following four points

have been identified as the main issues in the experimental implementation of the site hopping

technique.

• Computation time - If filtering and fitting cannot be computed fast enough, the small

errors due to frequency mismatch and phase offsets will build up and spoil the inferred

knowledge of particle’s position and velocity. The inference process and fitting took be-

tween a few milliseconds for the lowest sampling resolution to a few seconds for the largest

sampling resolution using a Python implementation (code provided in the Appendix section

8.3). The particle is expected to behave harmonically for a time Γ−1 = 20µs for 50kHz,

such that the filter’s dynamics are able to describe its motion. Although figure (6.7) shows

that the harmonic motion can persist for far longer times, in both resolution cases the com-

putation time is still far too long. Figure (6.11) shows that the accuracy depreciated very

quickly after only about 20µs of assumed computation time. This makes the computation

time one of the key limitations to implementing this site hopping technique in an experiment.

In order to effectively mitigate the detriment to accuracy, computation time has to be

reduced. An improvement to speed can be incorporated through the choice of the hard-

ware architecture for the purpose of data acquisition and processing. One possible choice

of a platform is a field-programmable gate array (FPGA). It is a form of reconfigurable

computing architecture, bringing together the flexiblity of software and high performance

of hardware. They contain an array of logic blocks which can be programmed together to

implement complex algorithms with optimal gate usage and minimum input output latency.

The filter can be programmed specifically for the purpose of implementing the site hopping

scheme. However this can be a difficult task as it requires knowledge of digital circuit design

and a hardware description language such as VHDL. A simpler and cheap alternative is

perhaps a programmable system on a chip (PSoC) - this would involve some form of visual

programming for configuration of the microcontrollers’s pins
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• Relying on experimentally accessible parameters - Results shown in the previous

section were obtained under the assumption that a few key parameters were known due

to their experimental accessibility. Knowledge of of the trap frequency Ωz and damping

rate Γ is necessary for Kalman filter input to model the system dynamics. A discrepancy

in frequency would lead to a drift in the curve-fitted trajectory leading to a rapid loss of

accuracy. However, both of these quantities can be observed by inspecting the power spectral

density of the homodyne signal.

• Initialisation - Knowledge of initial position and phase was also assumed. The simulations

were conveniently initialised with initial values of position and phase set to or close to their

true values with low uncertainty encoded in the covariance. This had to be done because

poor knowledge of the initial state yielded poor performance of the filter and in many cases

divergence. A choice of initial position is less significant. Although it is required to even de-

cide which direction of transfer to choose, the knowledge of which site the particle is located

is sufficient (100nm resolution). The filter can then initiated with an underestimated uncer-

tainty to avoid divergence, which would result a global phase offset in the trajectory, but the

direction of travel and velocity could still be inferred. Analysis of the PSD could possibly

be used as an initial position estimate through estimation of the average square position 〈z2〉.

Poor choice of phase and high uncertainty leads to much more severe consequences; The

filter diverges frequently and global phase offsets are common. Both of these effects lead

to an extreme loss of accuracy. Initial phase can perhaps be obtained through its measure-

ment before filtering. The phase is slowly drifting and varying significantly on the order of

a minute (γ−1 = 10s), hence observing the power signal on this time scale could allow to

deduce a suitable initial value for the phase. Alternatively, a lock-in amplifier could be used

to measure the phase if the hardware is available and the reference signal is stable.

• Measurement noise - Measurement covariance R = 0.12 in the simulation could be con-

siderably higher compared with the 5.2pW/
√

Hz noise equivalent power of the HCA-S-200M

photodiode used in the experiment. However, other sources of noise could be at play such

as laser intensity fluctuations which increase the noise in the measurement. The signal is

also likely to be lower than anticipated in section (5.4) due to misalignment of the optics or

discrepancy introduced by the paraxial approximation which was used to obtain the estimate

for a high NA lens. The Kalman filter performance is highly sensitive to the measurement

noise and its performance depends on it. Therefore, any experimental means of decreasing it

is an important factor when aiming to increase the accuracy of site hopping technique. All

results were obtained with the excitation parameter set to β = 0.3. Increasing the excitation

amplitude could have the effect of increasing the signal-to-noise ratio but could also have an

effect on the velocity control.
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7 Conclusions and Future Work

The main focus of the project was put on developing the site hopping scheme. The results pre-

sented show that, in principle, the scheme has a potential of achieving over 90% accuracy in

transferring a particle to a desired site. At lower sampling resolutions, the scheme is still able

to transfer more than 60% of particles, with the other particles remaining in its current site or

leaving after a successful transfer. This indicates that better velocity control and estimation is

required, which could lead to a dramatic increase in accuracy. Negligible number of particles in

the study were transferred to the wrong site in all sampling cases, meaning that the technique

could be re-applied to attempt another transfer after one that was unsuccessful.

The technique shows experimental promise, as the hardware required to implement it fast enough

is available. Implementation on this hardware however would be a difficult task. The unscented

Kalman filter is a recent analysis technique and its obscure application is unlikely to have available

libraries or support on the hardware identified in section 6.4. It would need to be implemented

from scratch, along with all of its numerical intricacies which ensure that the filter does not di-

verge during operation. In experimental application, the largest obstacle to overcome would be

the estimation of the initial state. The user would need the knowledge of which site the particle

resides in for a successful application which assures that the filter does not diverge. Further study

of the occurrence of divergence could be beneficial. For example, limits could be placed on the

maximum uncertainty ‘allowed’ by the filter without divergence.
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8 Appendix

8.1 The Euler-Maruyama Method

For a stochastic differential equation,

dXt = a(Xt)dt+ b(Xt)dWt, (8.1)

where Wt and the initial condition X0 = x0, is a Weiner process the Euler-Maruyama method

provides means of obtaining a numerical approximation of the true solution Xt for some interval

[0, T ]. The approximate solution is the Markov chain Y defined as follows:

1. Set Y0 = x0

2. Recursively define Yn+1 = Yn + a(Yn)∆t + b(Yn)∆Wt where ∆t = T/N for N points τn in

the interval [0, T ] and ∆Wt = Wτn+1 −Wτn+1 .

∆Wn has characterstic Weiner process properties; It is independent from ∆Wn′ where n 6= n
′

and

it is normally distributed about 0 with variance equal to ∆t.

8.2 Particle Dynamics Code

1 #!/usr/bin/python3

2 import sys

3 import numpy as np

4 from numpy import pi, sqrt, exp, arctan, sin

5 from numpy.random import randn

6 from scipy.constants import c, epsilon_0, Boltzmann, g

7

8 def Modulation(t, turnoff):

9 """ Intensity modulation function"""

10 T1 = turnoff[0]

11 T2 = turnoff[1]

12 if t < 20e-6:

13 return 1

14 elif t < float(tchoice)*1e-6:

15 return (1+beta*sin(Omega_Mod*t))

16 elif t < T1:

17 return 1

18 elif t < (T1+T2):

19 return 0

20 else:
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21 return 1

22

23 def sde(f, x0, t_off, dt, dW):

24 """Euler--Maruyama method for Stochastic Differential Equations"""

25 tn = therm_t[-1]

26 xn = x0

27 sqrtdt = sqrt(dt)

28 while True:

29 yield tn,xn

30 xn = xn + f(tn,xn,t_off)*dt + dW(sqrtdt)

31 tn = tn + dt

32

33 def dW(sqrtdt):

34 ans = np.zeros((N,6))

35 ans[:,3:6] = dW0*randn(N,3)*sqrtdt

36 return ans

37

38 def I(t,X,t_off):

39 """Intensity as a function time and state vector.

40 Expected to be separable into M(t)*I(x,y,z) and no dependence on vx,vy,vz."""

41 x,y,z = X[:,0],X[:,1],X[:,2]

42 r2 = x**2 + y**2

43 w2 = w0**2*(1+(z/zR)**2)

44 w = sqrt(w2)

45 R = z*(1+(zR/z)**2)

46 phi = arctan(z/zR)

47 E1 = (w0/w)*exp(-r2/w2)*exp(-1j*( k*z + k*r2/(2*R) - phi))

48 E2 = (w0/w)*exp(-r2/w2)*exp(-1j*(-k*z - k*r2/(2*R) + phi))

49 Et = E1 + E2

50 I = I0*abs(Et)**2

51 M = np.array([Modulation(t, i) for i in t_off])

52 return M*I

53

54 def gradI(t,X,t_off):

55 """Forward difference numerical approximation to derivative of intensity I(t,X)"""

56 I_centre = I(t,X,t_off)

57 X_x = X.copy(); X_x[:,0] += delta

58 X_y = X.copy(); X_y[:,1] += delta

59 X_z = X.copy(); X_z[:,2] += delta

60 I_x = I(t,X_x,t_off)

61 I_y = I(t,X_y,t_off)

62 I_z = I(t,X_z,t_off)

63 ans = np.zeros((len(X),3))

64 ans[:,0] = (I_x-I_centre)/delta

65 ans[:,1] = (I_y-I_centre)/delta

66 ans[:,2] = (I_z-I_centre)/delta

67 return ans
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68

69 def ForceGrad(t,X,t_off):

70 """Optical gradient force"""

71 return chi/(2*c)*gradI(t,X,t_off)

72

73 def f(t,X,t_off):

74 Xdot = np.zeros_like(X)

75 Xdot[:,0:3] = X[:,3:6]

76 Xdot[:,3:6] = ForceGrad(t,X,t_off)/mass

77 Xdot[:,3] += -g # acceleration due to gravity

78 return Xdot

79

80

81

82 beta = float(sys.argv[1]) # Choice of modulation beta param

83 tchoice = sys.argv[2] # Choice of modulation excitation time

84

85 therm_x = np.load(’thermalised-x.npy’) # Thermalised x data

86 therm_t = np.load(’thermalised-t.npy’) # Thermalised t data

87

88

89 wavelength = 1550e-9 # Laser wavelength

90 opower = 2.0 # Optical power

91 w0 = 2e-6 # Beam waist

92 Gamma = 50e3 # Damping rate of particle

93 temp = 300. # Temperature

94 radius = 100e-9 # Particle radius

95 density = 2329. # Particle density

96 Omega_Mod = 2*pi*793e3*2 # Modulation frequency

97 epsilon = 2.25 # Relative permitivity

98 delta = 1e-9 # Used for finite-difference approximation to spatial

derivative

99 dt = 1e-10 # Simulation time-step. Real time step approx. dt * 1e4

100 vol = (4/3)*pi*radius**3 # Particle volume

101 mass = density*vol # Particle mass

102 chi = 3*vol*(epsilon-1)/(epsilon+2) # The susceptibility

103 dW0 = sqrt(Gamma*Boltzmann*temp/mass) # Spread of the Weiner process

104 I0 = 2*opower/(pi*w0**2) # Maximum laser intensity

105 zR = pi*w0**2/wavelength # Rayleigh range

106 k = 2*pi/wavelength # Wavenumber

107 N = 100 # Number of particle trajectories

108

109 M = 2**19 # Used later to generate the 1d time array

110 dM = 2**4

111

112 # Load thermalised data, if exists

113 from itertools import islice
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114 if ’therm_x’ in dir() and ’therm_t’ in dir():

115 print("Initialising thermalised data")

116 # Load release times and off durations for the trajectories

117 T = np.load(’offtimes.npy’)

118 # Initial state = last state of thermalised data set

119 X0 = therm_x[-1,:,:]

120 # Solve the DE using Euler-Maruyama

121 solver = sde(f,X0,T,dt,dW)

122 Xs = np.array([X for t,X in islice(solver, 0, M, dM)])

123 ts = np.arange(therm_t[-1]/dt,M+therm_t[-1]/dt,dM)*dt

124 # Stick the thermalised data set and the evolved data set together

125 Xs = np.vstack((therm_x,Xs))

126 ts = np.append(therm_t,ts)

127 else:

128 print("No thermalised data")

129 # Organise state-vector as (N particles) x (rx,ry,rz,vx,vy,vz) i.e. (N,6)

130 # Initialise particle positions at a random position within the centre site

131 # at zero velocity

132 X0 = np.zeros((N,6))

133 X0[:,0] = randn(N)*1e-9

134 X0[:,1] = randn(N)*1e-9

135 X0[:,2] = randn(N)*1e-9

136 solver = sde(f,X0,dt,dW)

137 Xs = np.array([X for t,X in islice(solver, 0, M, dM)])

138 ts = np.arange(0,M,dM)*dt

139

140 np.save(’x-b{}-t{}-m{}.npy’.format(bchoice,tchoice,ts[-1]),Xs)

141 np.save(’tdata-{}.npy’.format(ts[-1]),ts)

8.3 Site Hopping Code

1 #!/usr/bin/python3

2 import numpy as np

3 import timeit

4 from scipy.optimize import curve_fit

5 from filterpy.kalman import UnscentedKalmanFilter as UKF

6 from filterpy.kalman import MerweScaledSigmaPoints

7 from filterpy.common import Q_discrete_white_noise

8 from filterpy.kalman import rts_smoother

9 from math import ceil

10

11 def sol1(t,a,w,b):

12 # For deducing true frequency

13 return a*np.sin(w*t+b)

14

15 def sol2(t,a,b):
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16 # Use known true frequency

17 return a*np.sin(omega_z*t + b)

18

19 def F(state,dt):

20 # System dynamics

21 F = np.array([[(C+(gamma/omega)*S)*E,S*E/omega,0,0],

22 [-S*E*omega_z**2/omega,(C-(gamma/omega)*S)*E,0,0],

23 [0,0, 1, (1-E2)/E2],

24 [0,0,0,E2]])

25 return F @ state

26

27 def H(state):

28 # Measurement function

29 z = state[0]

30 theta = state[2]

31 return (np.sin(kappa*z+theta),)

32

33 Xs = np.load(’x-data.npy’)[28000:,:,2]

34 ts = np.load(’t-data.npy’)[28000:]

35 theta = np.load(’phase-data.npy’)[28000:,:,0]

36 offtimes = np.zeros(Xs.shape[1]*2).reshape(Xs.shape[1],2)

37

38 gamma = 50e3 # Damping rate of position z

39 kappa = 4*np.pi/1550e-9 # Rate of change of phase with position z

40 gamma_phase = 0.1 # Damping rate of phase theta

41 sd = 0.1 # Measurement noise standard deviation

42 sampling_every = 1 # Sample measurement every 1 point(s)

43 qvariance = 1e12 # Process noise of position and velocity

44 qvariance2 = 1e25 # Process noise of phase and its rate of change in time

45

46 t_sampled = ts[::sampling_every]

47 dt = (t_sampled[-1]-t_sampled[0])/len(t_sampled)

48

49 # Finding release time and off duration for all trajectories in Xs

50 for i in range(Xs.shape[1]):

51 # Deducing the true frequency using curve fitting, different for each trajectory

52 T = ts[2000:]

53 X = Xs[2000:,i]

54 initials = [4e-8,4.85e6,0]

55 p,cov = curve_fit(sol1,T,X,p0=initials)

56

57 omega_z = p[1]

58 omega = np.sqrt(omega_z**2 - gamma**2)

59

60 S = np.sin(omega*dt)

61 C = np.cos(omega*dt)

62 E = np.exp(-gamma*dt)
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63 E2 = np.exp(-gamma_phase*dt)

64

65 # Generating sigma points

66 points = MerweScaledSigmaPoints(n=4, alpha=0.1, beta=2., kappa=-1)

67 # Initiating the filter

68 ukf = UKF(dim_x=4, dim_z=1, fx=F, hx=H, dt=dt, points=points)

69 ukf.x = np.array([0,0,0,0])*1e-6

70 ukf.P *= 1e-13

71 ukf.R = sd**2

72 vals = Xs[::sampling_every,i].size

73 # Simulate measurements

74 Zs = np.random.normal(np.sin(kappa*Xs[::sampling_every,i] + theta[::sampling_every,i]),sd,vals)

75 st = timeit.default_timer()

76 ukf.Q[:2,:2] = Q_discrete_white_noise(2, dt=dt, var=qvariance)

77 ukf.Q[2:,2:] = Q_discrete_white_noise(2, dt=dt, var=qvariance2)

78 # Filtering

79 xs, Ps = ukf.batch_filter(Zs)

80 # Curve Fitting

81 mx = int(xs[:,0].size/2)

82 mx = int(0.5*xs.shape[0])

83 T = ts[::sampling_every][mx:]

84 X = xs[:,0][mx:]

85 sigma0 = Ps[:,0,0][mx:]

86 initials = [4e-8,0]

87 p,cov = curve_fit(sol2,T,X,p0=initials)

88 # Select release time

89 N = ceil((omega_z*ts[-1]+p[1])/(2*np.pi)) + 10

90 if p[0]>0:

91 T1 = (2*N*np.pi - p[1])/omega_z

92 else:

93 T1 = ((2*N+1)*np.pi - p[1])/omega_z

94 # Select off duration

95 T2 = 0.75e-6/np.max(xs[:,1])

96 offtimes[i] = T1,T2

97 print(i,T1,T2)

98 np.save(’offtimes.npy’,offtimes)

65
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